These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


656 related items for PubMed ID: 32334142

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Measuring Velocity, Attenuation, and Reflection in Surface Acoustic Wave Cavities Through Acoustic Fabry-Pérot Spectra.
    Kelly L, Berini P, Bao X.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1542-1548. PubMed ID: 35081023
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Surface acoustic wave manipulation of bioparticles.
    Qi M, Dang D, Yang X, Wang J, Zhang H, Liang W.
    Soft Matter; 2023 Jun 14; 19(23):4166-4187. PubMed ID: 37212436
    [Abstract] [Full Text] [Related]

  • 5. Surface acoustic wave microfluidics.
    Ding X, Li P, Lin SC, Stratton ZS, Nama N, Guo F, Slotcavage D, Mao X, Shi J, Costanzo F, Huang TJ.
    Lab Chip; 2013 Sep 21; 13(18):3626-49. PubMed ID: 23900527
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves.
    Xu M, Lee PVS, Collins DJ.
    Lab Chip; 2021 Dec 21; 22(1):90-99. PubMed ID: 34860222
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Emerging on-chip surface acoustic wave technology for small biomaterials manipulation and characterization.
    Gao Y, Fajrial AK, Yang T, Ding X.
    Biomater Sci; 2021 Mar 10; 9(5):1574-1582. PubMed ID: 33283794
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X, Zheng T, Wang C.
    Ultrasonics; 2023 Mar 10; 129():106914. PubMed ID: 36577304
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X, Lin SC, Kiraly B, Yue H, Li S, Chiang IK, Shi J, Benkovic SJ, Huang TJ.
    Proc Natl Acad Sci U S A; 2012 Jul 10; 109(28):11105-9. PubMed ID: 22733731
    [Abstract] [Full Text] [Related]

  • 16. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics.
    Travagliati M, Shilton R, Beltram F, Cecchini M.
    J Vis Exp; 2013 Aug 27; (78):. PubMed ID: 24022515
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles.
    Huang J, Ren X, Zhou Q, Zhou J, Xu Z.
    Ultrasonics; 2023 Feb 27; 128():106865. PubMed ID: 36260963
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Pure SH-SAW propagation, transduction and measurements on KNbO3.
    Pollard TB, Kenny TD, Vetelino JF, da Cunha MP.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan 27; 53(1):199-208. PubMed ID: 16471447
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.