These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
261 related items for PubMed ID: 32339775
1. Formant frequency discrimination with a fine structure sound coding strategy for cochlear implants. Liepins R, Kaider A, Honeder C, Auinger AB, Dahm V, Riss D, Arnoldner C. Hear Res; 2020 Jul; 392():107970. PubMed ID: 32339775 [Abstract] [Full Text] [Related]
2. FS4, FS4-p, and FSP: a 4-month crossover study of 3 fine structure sound-coding strategies. Riss D, Hamzavi JS, Blineder M, Honeder C, Ehrenreich I, Kaider A, Baumgartner WD, Gstoettner W, Arnoldner C. Ear Hear; 2014 Jul; 35(6):e272-81. PubMed ID: 25127325 [Abstract] [Full Text] [Related]
3. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects. Auinger AB, Riss D, Liepins R, Rader T, Keck T, Keintzel T, Kaider A, Baumgartner WD, Gstoettner W, Arnoldner C. Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538 [Abstract] [Full Text] [Related]
4. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users. Bonnard D, Schwalje A, Gantz B, Choi I. Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380 [Abstract] [Full Text] [Related]
5. Psychoacoustic and phoneme identification measures in cochlear-implant and normal-hearing listeners. Goldsworthy RL, Delhorne LA, Braida LD, Reed CM. Trends Amplif; 2013 Mar; 17(1):27-44. PubMed ID: 23429419 [Abstract] [Full Text] [Related]
6. The effect of a coding strategy that removes temporally masked pulses on speech perception by cochlear implant users. Lamping W, Goehring T, Marozeau J, Carlyon RP. Hear Res; 2020 Jun; 391():107969. PubMed ID: 32320925 [Abstract] [Full Text] [Related]
7. Results using the OPAL strategy in Mandarin speaking cochlear implant recipients. Vandali AE, Dawson PW, Arora K. Int J Audiol; 2017 Jun; 56(sup2):S74-S85. PubMed ID: 27329178 [Abstract] [Full Text] [Related]
8. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing. Zamaninezhad L, Hohmann V, Büchner A, Schädler MR, Jürgens T. Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372 [Abstract] [Full Text] [Related]
9. Impact of room acoustic parameters on speech and music perception among participants with cochlear implants. Eurich B, Klenzner T, Oehler M. Hear Res; 2019 Jun; 377():122-132. PubMed ID: 30933704 [Abstract] [Full Text] [Related]
10. The multi-channel cochlear implant: multi-disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit. Clark GM. Hear Res; 2015 Apr; 322():4-13. PubMed ID: 25159273 [Abstract] [Full Text] [Related]
11. Benefits of bilateral electrical stimulation with the nucleus cochlear implant in adults: 6-month postoperative results. Laszig R, Aschendorff A, Stecker M, Müller-Deile J, Maune S, Dillier N, Weber B, Hey M, Begall K, Lenarz T, Battmer RD, Böhm M, Steffens T, Strutz J, Linder T, Probst R, Allum J, Westhofen M, Doering W. Otol Neurotol; 2004 Nov; 25(6):958-68. PubMed ID: 15547426 [Abstract] [Full Text] [Related]
12. Factors influencing speech perception in noise for 5-year-old children using hearing aids or cochlear implants. Ching TY, Zhang VW, Flynn C, Burns L, Button L, Hou S, McGhie K, Van Buynder P. Int J Audiol; 2018 May; 57(sup2):S70-S80. PubMed ID: 28687057 [Abstract] [Full Text] [Related]
13. Factors constraining the benefit to speech understanding of combining information from low-frequency hearing and a cochlear implant. Dorman MF, Cook S, Spahr A, Zhang T, Loiselle L, Schramm D, Whittingham J, Gifford R. Hear Res; 2015 Apr; 322():107-11. PubMed ID: 25285624 [Abstract] [Full Text] [Related]
14. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field. Rader T, Fastl H, Baumann U. Ear Hear; 2013 Apr; 34(3):324-32. PubMed ID: 23263408 [Abstract] [Full Text] [Related]
15. Avoiding disconnection: An evaluation of telephone options for cochlear implant users. Marcrum SC, Picou EM, Steffens T. Int J Audiol; 2017 Mar; 56(3):186-193. PubMed ID: 27809627 [Abstract] [Full Text] [Related]
16. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing. Oxenham AJ, Kreft HA. Trends Hear; 2014 Oct 13; 18():. PubMed ID: 25315376 [Abstract] [Full Text] [Related]
17. Examination of Prosody and Timbre Perception in Adults With Cochlear Implants Comparing Different Fine Structure Coding Strategies. Müller V, Klünter H, Fürstenberg D, Meister H, Walger M, Lang-Roth R. Am J Audiol; 2018 Jun 08; 27(2):197-207. PubMed ID: 29536106 [Abstract] [Full Text] [Related]
18. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users. Goehring T, Bolner F, Monaghan JJ, van Dijk B, Zarowski A, Bleeck S. Hear Res; 2017 Feb 08; 344():183-194. PubMed ID: 27913315 [Abstract] [Full Text] [Related]
19. Contribution of formant frequency information to vowel perception in steady-state noise by cochlear implant users. Sagi E, Svirsky MA. J Acoust Soc Am; 2017 Feb 08; 141(2):1027. PubMed ID: 28253672 [Abstract] [Full Text] [Related]
20. Clinical outcomes with the Kanso™ off-the-ear cochlear implant sound processor. Mauger SJ, Jones M, Nel E, Del Dot J. Int J Audiol; 2017 Apr 08; 56(4):267-276. PubMed ID: 28067077 [Abstract] [Full Text] [Related] Page: [Next] [New Search]