These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 32355111
21. Reliability analysis of successive Corneal Visualization Scheimpflug Technology measurements in different keratoconus stages. Flockerzi E, Häfner L, Xanthopoulou K, Daas L, Munteanu C, Langenbucher A, Seitz B. Acta Ophthalmol; 2022 Feb; 100(1):e83-e90. PubMed ID: 33750037 [Abstract] [Full Text] [Related]
25. Corneal Biomechanics in Unilateral Keratoconus and Fellow Eyes with a Scheimpflug-based Tonometer. Catalán-López S, Cadarso-Suárez L, López-Ratón M, Cadarso-Suárez C. Optom Vis Sci; 2018 Jul; 95(7):608-615. PubMed ID: 29957740 [Abstract] [Full Text] [Related]
26. Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus. Koprowski R, Ambrósio R. Comput Biol Med; 2015 Nov 01; 66():170-8. PubMed ID: 26410602 [Abstract] [Full Text] [Related]
28. Comparison of three intraocular pressure measurement methods including biomechanical properties of the cornea. Smedowski A, Weglarz B, Tarnawska D, Kaarniranta K, Wylegala E. Invest Ophthalmol Vis Sci; 2014 Feb 04; 55(2):666-73. PubMed ID: 24425850 [Abstract] [Full Text] [Related]
29. The Role of Ocular Response Analyzer in Differentiation of Forme Fruste Keratoconus From Corneal Astigmatism. Kirgiz A, Karaman Erdur S, Atalay K, Gurez C. Eye Contact Lens; 2019 Mar 04; 45(2):83-87. PubMed ID: 30265255 [Abstract] [Full Text] [Related]
34. Corneal Viscous Properties Cannot Be Determined From Air-Puff Applanation. Francis M, Matalia H, Nuijts RMMA, Haex B, Shetty R, Sinha Roy A. J Refract Surg; 2019 Nov 01; 35(11):730-736. PubMed ID: 31710375 [Abstract] [Full Text] [Related]
35. Agreement of Corrected Intraocular Pressure Values Between Corvis ST and Pentacam in Patients With Keratoconus, Subclinical Keratoconus, and Normal Cornea. Chen Y, Rong H, Liu W, Liu G, Du B, Jin C, Wei R. Cornea; 2021 Nov 01; 40(11):1426-1432. PubMed ID: 33734163 [Abstract] [Full Text] [Related]
36. Changes in ocular biomechanics after femtosecond laser creation of a laser in situ keratomileusis flap. Leccisotti A, Fields SV, Moore J, Shah S, Moore TC. J Cataract Refract Surg; 2016 Jan 01; 42(1):127-31. PubMed ID: 26948787 [Abstract] [Full Text] [Related]
37. Novel Parameter of Corneal Biomechanics That Differentiate Normals From Glaucoma. Lee R, Chang RT, Wong IY, Lai JS, Lee JW, Singh K. J Glaucoma; 2016 Jun 01; 25(6):e603-9. PubMed ID: 26035421 [Abstract] [Full Text] [Related]
38. Biomechanical changes in the cornea following cataract surgery: A prospective assessment with the Corneal Visualisation Scheimpflug Technology. Wallace HB, Misra SL, Li SS, McKelvie J. Clin Exp Ophthalmol; 2019 May 01; 47(4):461-468. PubMed ID: 30474314 [Abstract] [Full Text] [Related]
39. Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Valbon BF, Ambrósio R, Fontes BM, Alves MR. Arq Bras Oftalmol; 2013 May 01; 76(4):229-32. PubMed ID: 24061834 [Abstract] [Full Text] [Related]