These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
229 related items for PubMed ID: 32357972
1. Human Aldehyde Oxidase 1-Mediated Carbazeran Oxidation in Chimeric TK-NOG Mice Transplanted with Human Hepatocytes. Uehara S, Yoneda N, Higuchi Y, Yamazaki H, Suemizu H. Drug Metab Dispos; 2020 Jul; 48(7):580-586. PubMed ID: 32357972 [Abstract] [Full Text] [Related]
2. Oxidative metabolism and pharmacokinetics of the EGFR inhibitor BIBX1382 in chimeric NOG-TKm30 mice transplanted with human hepatocytes. Uehara S, Yoneda N, Higuchi Y, Yamazaki H, Suemizu H. Drug Metab Pharmacokinet; 2021 Dec; 41():100419. PubMed ID: 34624627 [Abstract] [Full Text] [Related]
3. Evaluation of Carbazeran 4-Oxidation and O6-Benzylguanine 8-Oxidation as Catalytic Markers of Human Aldehyde Oxidase: Impact of Cytosolic Contamination of Liver Microsomes. Xie J, Saburulla NF, Chen S, Wong SY, Yap ZP, Zhang LH, Lau AJ. Drug Metab Dispos; 2019 Jan; 47(1):26-37. PubMed ID: 30337443 [Abstract] [Full Text] [Related]
4. The Unique Human N10-Glucuronidated Metabolite Formation from Olanzapine in Chimeric NOG-TKm30 Mice with Humanized Livers. Uehara S, Higuchi Y, Yoneda N, Kato H, Yamazaki H, Suemizu H. Drug Metab Dispos; 2023 Apr; 51(4):480-491. PubMed ID: 36623885 [Abstract] [Full Text] [Related]
5. Prediction of Human Disproportionate and Biliary Excreted Metabolites Using Chimeric Mice with Humanized Liver. Kato S, Shah A, Plesescu M, Miyata Y, Bolleddula J, Chowdhury S, Zhu X. Drug Metab Dispos; 2020 Oct; 48(10):934-943. PubMed ID: 32665417 [Abstract] [Full Text] [Related]
8. Molecular Cloning and Characterization of Marmoset Aldehyde Oxidase. Uehara S, Uno Y, Okamoto E, Inoue T, Sasaki E, Yamazaki H. Drug Metab Dispos; 2017 Aug; 45(8):883-886. PubMed ID: 28487309 [Abstract] [Full Text] [Related]
10. In Vitro Inhibition of Human Aldehyde Oxidase Activity by Clinically Relevant Concentrations of Gefitinib and Erlotinib: Comparison with Select Metabolites, Molecular Docking Analysis, and Impact on Hepatic Metabolism of Zaleplon and Methotrexate. Tan WK, Tan ARY, Sivanandam P, Goh EJH, Yap ZP, Saburulla NF, Austin-Muttitt K, Mullins JGL, Lau AJ. J Pharmacol Exp Ther; 2020 Aug; 374(2):295-307. PubMed ID: 32393528 [Abstract] [Full Text] [Related]
11. Aldehyde oxidase-catalyzed metabolism of N1-methylnicotinamide in vivo and in vitro in chimeric mice with humanized liver. Kitamura S, Nitta K, Tayama Y, Tanoue C, Sugihara K, Inoue T, Horie T, Ohta S. Drug Metab Dispos; 2008 Jul; 36(7):1202-5. PubMed ID: 18332084 [Abstract] [Full Text] [Related]
12. Oxidative metabolism of carbazeran in vitro by liver cytosol of baboon and man. Kaye B, Rance DJ, Waring L. Xenobiotica; 1985 Mar; 15(3):237-42. PubMed ID: 4024658 [Abstract] [Full Text] [Related]
13. Species-Specific Involvement of Aldehyde Oxidase and Xanthine Oxidase in the Metabolism of the Pyrimidine-Containing mGlu5-Negative Allosteric Modulator VU0424238 (Auglurant). Crouch RD, Blobaum AL, Felts AS, Conn PJ, Lindsley CW. Drug Metab Dispos; 2017 Dec; 45(12):1245-1259. PubMed ID: 28939686 [Abstract] [Full Text] [Related]
14. In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver. Rashidi MR, Smith JA, Clarke SE, Beedham C. Drug Metab Dispos; 1997 Jul; 25(7):805-13. PubMed ID: 9224775 [Abstract] [Full Text] [Related]
15. Ontogeny of Human Liver Aldehyde Oxidase: Developmental Changes and Implications for Drug Metabolism. Subash S, Singh DK, Ahire D, Khojasteh SC, Murray BP, Zientek MA, Jones RS, Kulkarni P, Zubair F, Smith BJ, Heyward S, Leeder JS, Prasad B. Mol Pharm; 2024 Jun 03; 21(6):2740-2750. PubMed ID: 38717252 [Abstract] [Full Text] [Related]
16. SGX523 causes renal toxicity through aldehyde oxidase-mediated less-soluble metabolite formation in chimeric mice with humanized livers. Uehara S, Yasuda M, Higuchi Y, Yoneda N, Kawai K, Suzuki M, Yamazaki H, Suemizu H. Toxicol Lett; 2023 Oct 01; 388():48-55. PubMed ID: 37806366 [Abstract] [Full Text] [Related]
17. Lack of Exposure in a First-in-Man Study Due to Aldehyde Oxidase Metabolism: Investigated by Use of 14C-microdose, Humanized Mice, Monkey Pharmacokinetics, and In Vitro Methods. Jensen KG, Jacobsen AM, Bundgaard C, Nilausen DØ, Thale Z, Chandrasena G, Jørgensen M. Drug Metab Dispos; 2017 Jan 01; 45(1):68-75. PubMed ID: 27737930 [Abstract] [Full Text] [Related]
18. Metabolism of desloratadine by chimeric TK-NOG mice transplanted with human hepatocytes. Uehara S, Yoneda N, Higuchi Y, Yamazaki H, Suemizu H. Xenobiotica; 2020 Jun 01; 50(6):733-740. PubMed ID: 31690163 [Abstract] [Full Text] [Related]
19. Species differences in enantioselective 2-oxidations of RS-8359, a selective and reversible MAO-A inhibitor, and cinchona alkaloids by aldehyde oxidase. Itoh K, Yamamura M, Takasaki W, Sasaki T, Masubuchi A, Tanaka Y. Biopharm Drug Dispos; 2006 Apr 01; 27(3):133-9. PubMed ID: 16400710 [Abstract] [Full Text] [Related]
20. In Vitro Metabolism by Aldehyde Oxidase Leads to Poor Pharmacokinetic Profile in Rats for c-Met Inhibitor MET401. Zhang JW, Deng HB, Zhang CY, Dai JQ, Li Q, Zheng QG, Wan HX, Yu HP, He F, Xu YC, Zhao S, Zhang JYJ. Eur J Drug Metab Pharmacokinet; 2019 Oct 01; 44(5):669-680. PubMed ID: 31030415 [Abstract] [Full Text] [Related] Page: [Next] [New Search]