These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
205 related items for PubMed ID: 32373807
21. Efficient and rapid digestion of proteins with a dual-enzyme microreactor featuring 3-D pores formed by dopamine/polyethyleneimine/acrylamide-coated KIT-6 molecular sieve. Yuan FF, Wang P, Han XJ, Qin TT, Lu X, Bai HJ. Sci Rep; 2024 Jul 08; 14(1):15667. PubMed ID: 38977741 [Abstract] [Full Text] [Related]
22. Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis. Bao H, Chen Q, Zhang L, Chen G. Analyst; 2011 Dec 21; 136(24):5190-6. PubMed ID: 22013584 [Abstract] [Full Text] [Related]
23. Metal-Organic-Framework-Based Enzymatic Microfluidic Biosensor via Surface Patterning and Biomineralization. Mohammad M, Razmjou A, Liang K, Asadnia M, Chen V. ACS Appl Mater Interfaces; 2019 Jan 16; 11(2):1807-1820. PubMed ID: 30525376 [Abstract] [Full Text] [Related]
24. Self-assembly synthes is of trypsin-immobilized monolithic microreactor for fast and efficient proteolysis. Zhong C, Yang B, Huang W, Huang H, Zhang S, Yan X, Lu Q, Chen Z, Lin Z. J Chromatogr A; 2021 Jan 04; 1635():461742. PubMed ID: 33254000 [Abstract] [Full Text] [Related]
25. A capillary monolithic trypsin reactor for efficient protein digestion in online and offline coupling to ESI and MALDI mass spectrometry. Spross J, Sinz A. Anal Chem; 2010 Feb 15; 82(4):1434-43. PubMed ID: 20099804 [Abstract] [Full Text] [Related]
26. Immobilized trypsin on hydrophobic cellulose decorated nanoparticles shows good stability and reusability for protein digestion. Sun X, Cai X, Wang RQ, Xiao J. Anal Biochem; 2015 May 15; 477():21-7. PubMed ID: 25700866 [Abstract] [Full Text] [Related]
27. Metal-Organic Framework Disintegrants: Enzyme Preparation Platforms with Boosted Activity. An H, Song J, Wang T, Xiao N, Zhang Z, Cheng P, Ma S, Huang H, Chen Y. Angew Chem Int Ed Engl; 2020 Sep 14; 59(38):16764-16769. PubMed ID: 32521109 [Abstract] [Full Text] [Related]
28. Metal-Organic Frameworks: A New Platform for Enzyme Immobilization. Ye N, Kou X, Shen J, Huang S, Chen G, Ouyang G. Chembiochem; 2020 Sep 14; 21(18):2585-2590. PubMed ID: 32291902 [Abstract] [Full Text] [Related]
29. Enhanced Activity of Enzyme Immobilized on Hydrophobic ZIF-8 Modified by Ni2+ Ions. Yang XG, Zhang JR, Tian XK, Qin JH, Zhang XY, Ma LF. Angew Chem Int Ed Engl; 2023 Feb 06; 62(7):e202216699. PubMed ID: 36536412 [Abstract] [Full Text] [Related]
30. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration. Ren S, Feng Y, Wen H, Li C, Sun B, Cui J, Jia S. Int J Biol Macromol; 2018 Oct 01; 117():189-198. PubMed ID: 29803747 [Abstract] [Full Text] [Related]
31. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion. Jiang B, Yang K, Zhao Q, Wu Q, Liang Z, Zhang L, Peng X, Zhang Y. J Chromatogr A; 2012 Sep 07; 1254():8-13. PubMed ID: 22871380 [Abstract] [Full Text] [Related]
32. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion. Yuan H, Zhang L, Zhang Y. J Chromatogr A; 2014 Dec 05; 1371():48-57. PubMed ID: 25456586 [Abstract] [Full Text] [Related]
33. Enzyme Immobilization on Graphite Oxide (GO) Surface via One-Pot Synthesis of GO/Metal-Organic Framework Composites for Large-Substrate Biocatalysis. Farmakes J, Schuster I, Overby A, Alhalhooly L, Lenertz M, Li Q, Ugrinov A, Choi Y, Pan Y, Yang Z. ACS Appl Mater Interfaces; 2020 May 20; 12(20):23119-23126. PubMed ID: 32338863 [Abstract] [Full Text] [Related]
34. GOx@ZIF-8(NiPd) Nanoflower: An Artificial Enzyme System for Tandem Catalysis. Wang Q, Zhang X, Huang L, Zhang Z, Dong S. Angew Chem Int Ed Engl; 2017 Dec 11; 56(50):16082-16085. PubMed ID: 29119659 [Abstract] [Full Text] [Related]
35. Enhancing Enzyme Immobilization on Carbon Nanotubes via Metal-Organic Frameworks for Large-Substrate Biocatalysis. Neupane S, Patnode K, Li H, Baryeh K, Liu G, Hu J, Chen B, Pan Y, Yang Z. ACS Appl Mater Interfaces; 2019 Mar 27; 11(12):12133-12141. PubMed ID: 30839195 [Abstract] [Full Text] [Related]
36. Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Atacan K, Çakıroğlu B, Özacar M. Food Chem; 2016 Dec 01; 212():460-8. PubMed ID: 27374556 [Abstract] [Full Text] [Related]
37. Immobilized lipase in bio-based metal-organic frameworks constructed by biomimetic mineralization: A sustainable biocatalyst for biodiesel synthesis. Li Q, Chen Y, Bai S, Shao X, Jiang L, Li Q. Colloids Surf B Biointerfaces; 2020 Apr 01; 188():110812. PubMed ID: 31981814 [Abstract] [Full Text] [Related]
38. Immobilization of a polyphosphate kinase 2 by coordinative self-assembly of his-tagged units with metal-organic frameworks and its application in ATP regeneration from AMP. Niu H, Ding M, Sun X, Zhuang W, Liu D, Ying H, Zhu C, Chen Y. Colloids Surf B Biointerfaces; 2019 Sep 01; 181():261-269. PubMed ID: 31153021 [Abstract] [Full Text] [Related]
39. Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal-Organic Frameworks. Liang W, Xu H, Carraro F, Maddigan NK, Li Q, Bell SG, Huang DM, Tarzia A, Solomon MB, Amenitsch H, Vaccari L, Sumby CJ, Falcaro P, Doonan CJ. J Am Chem Soc; 2019 Feb 13; 141(6):2348-2355. PubMed ID: 30636404 [Abstract] [Full Text] [Related]
40. Hierarchical porous and hydrophilic metal-organic frameworks with enhanced enzyme activity. Li H, Lu X, Lu Q, Liu Y, Cao X, Lu Y, He X, Chen K, Ouyang P, Tan W. Chem Commun (Camb); 2020 Apr 30; 56(34):4724-4727. PubMed ID: 32219295 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]