These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


211 related items for PubMed ID: 32384210

  • 1. SlARG2 contributes to MeJA-induced defense responses to Botrytis cinerea in tomato fruit.
    Min D, Ai W, Zhou J, Li J, Zhang X, Li Z, Shi Z, Li F, Li X, Guo Y.
    Pest Manag Sci; 2020 Sep; 76(9):3292-3301. PubMed ID: 32384210
    [Abstract] [Full Text] [Related]

  • 2. CRISPR/Cas9-Mediated SlMYC2 Mutagenesis Adverse to Tomato Plant Growth and MeJA-Induced Fruit Resistance to Botrytis cinerea.
    Shu P, Li Z, Min D, Zhang X, Ai W, Li J, Zhou J, Li Z, Li F, Li X.
    J Agric Food Chem; 2020 May 20; 68(20):5529-5538. PubMed ID: 32372640
    [Abstract] [Full Text] [Related]

  • 3. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit.
    Yu W, Zhao R, Sheng J, Shen L.
    J Agric Food Chem; 2018 Sep 26; 66(38):9923-9932. PubMed ID: 30192535
    [Abstract] [Full Text] [Related]

  • 4. Methyl jasmonate-induced defense responses are associated with elevation of 1-aminocyclopropane-1-carboxylate oxidase in Lycopersicon esculentum fruit.
    Yu M, Shen L, Zhang A, Sheng J.
    J Plant Physiol; 2011 Oct 15; 168(15):1820-7. PubMed ID: 21788095
    [Abstract] [Full Text] [Related]

  • 5. Ethylene Perception Is Associated with Methyl-Jasmonate-Mediated Immune Response against Botrytis cinerea in Tomato Fruit.
    Yu W, Yu M, Zhao R, Sheng J, Li Y, Shen L.
    J Agric Food Chem; 2019 Jun 19; 67(24):6725-6735. PubMed ID: 31117506
    [Abstract] [Full Text] [Related]

  • 6. SlMYC2 are required for methyl jasmonate-induced tomato fruit resistance to Botrytis cinerea.
    Min D, Li F, Cui X, Zhou J, Li J, Ai W, Shu P, Zhang X, Li X, Meng D, Guo Y, Li J.
    Food Chem; 2020 Apr 25; 310():125901. PubMed ID: 31816533
    [Abstract] [Full Text] [Related]

  • 7. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F.
    BMC Plant Biol; 2015 Oct 21; 15():252. PubMed ID: 26490733
    [Abstract] [Full Text] [Related]

  • 8. Independent Preharvest Applications of Methyl Jasmonate and Chitosan Elicit Differential Upregulation of Defense-Related Genes with Reduced Incidence of Gray Mold Decay during Postharvest Storage of Fragaria chiloensis Fruit.
    Saavedra GM, Sanfuentes E, Figueroa PM, Figueroa CR.
    Int J Mol Sci; 2017 Jul 03; 18(7):. PubMed ID: 28671619
    [Abstract] [Full Text] [Related]

  • 9. Melatonin Induces Disease Resistance to Botrytis cinerea in Tomato Fruit by Activating Jasmonic Acid Signaling Pathway.
    Liu C, Chen L, Zhao R, Li R, Zhang S, Yu W, Sheng J, Shen L.
    J Agric Food Chem; 2019 Jun 05; 67(22):6116-6124. PubMed ID: 31084000
    [Abstract] [Full Text] [Related]

  • 10. SlMYC2 Involved in Methyl Jasmonate-Induced Tomato Fruit Chilling Tolerance.
    Min D, Li F, Zhang X, Cui X, Shu P, Dong L, Ren C.
    J Agric Food Chem; 2018 Mar 28; 66(12):3110-3117. PubMed ID: 29528226
    [Abstract] [Full Text] [Related]

  • 11. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato.
    Liu M, Zhang Z, Xu Z, Wang L, Chen C, Ren Z.
    Plant Cell Rep; 2021 Jan 28; 40(1):43-58. PubMed ID: 32990799
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Methyl jasmonate induces the resistance of postharvest blueberry to gray mold caused by Botrytis cinerea.
    Wang H, Kou X, Wu C, Fan G, Li T.
    J Sci Food Agric; 2020 Aug 30; 100(11):4272-4281. PubMed ID: 32378217
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato.
    Huang H, Zhao W, Li C, Qiao H, Song S, Yang R, Sun L, Ma J, Ma X, Wang S.
    Plant Physiol; 2022 Aug 29; 190(1):828-842. PubMed ID: 35689622
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C, de la O Leyva M, Finiti I, López-Cruz J, Fernández-Crespo E, García-Agustín P, González-Bosch C.
    J Plant Physiol; 2015 Mar 01; 175():163-73. PubMed ID: 25543862
    [Abstract] [Full Text] [Related]

  • 19. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress.
    Liu B, Hong YB, Zhang YF, Li XH, Huang L, Zhang HJ, Li DY, Song FM.
    Plant Sci; 2014 Oct 01; 227():145-56. PubMed ID: 25219316
    [Abstract] [Full Text] [Related]

  • 20. Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways.
    Shu P, Zhang S, Li Y, Wang X, Yao L, Sheng J, Shen L.
    Plant Physiol Biochem; 2021 Sep 01; 166():1-9. PubMed ID: 34087740
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.