These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


173 related items for PubMed ID: 32386168

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Inertial Sensing for Gait Event Detection and Transfemoral Prosthesis Control Strategy.
    Ledoux ED.
    IEEE Trans Biomed Eng; 2018 Dec; 65(12):2704-2712. PubMed ID: 29993444
    [Abstract] [Full Text] [Related]

  • 7. Measurement of foot placement and its variability with inertial sensors.
    Rebula JR, Ojeda LV, Adamczyk PG, Kuo AD.
    Gait Posture; 2013 Sep; 38(4):974-80. PubMed ID: 23810335
    [Abstract] [Full Text] [Related]

  • 8. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals.
    Rantalainen T, Pirkola H, Karavirta L, Rantanen T, Linnamo V.
    Gait Posture; 2019 Oct; 74():33-39. PubMed ID: 31442820
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. On the choice of multiscale entropy algorithm for quantification of complexity in gait data.
    Raffalt PC, Denton W, Yentes JM.
    Comput Biol Med; 2018 Dec 01; 103():93-100. PubMed ID: 30343216
    [Abstract] [Full Text] [Related]

  • 11. Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders.
    Wang Q, Ye L, Luo H, Men A, Zhao F, Huang Y.
    Sensors (Basel); 2019 Feb 18; 19(4):. PubMed ID: 30781668
    [Abstract] [Full Text] [Related]

  • 12. Evaluation and Application of a Customizable Wireless Platform: A Body Sensor Network for Unobtrusive Gait Analysis in Everyday Life.
    Lueken M, Mueller L, Decker MG, Bollheimer C, Leonhardt S, Ngo C.
    Sensors (Basel); 2020 Dec 20; 20(24):. PubMed ID: 33419278
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M, Kim J.
    IEEE Trans Biomed Eng; 2018 Apr 20; 65(4):885-893. PubMed ID: 28708542
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Mobile inertial sensor based gait analysis: Validity and reliability of spatiotemporal gait characteristics in healthy seniors.
    Donath L, Faude O, Lichtenstein E, Pagenstert G, Nüesch C, Mündermann A.
    Gait Posture; 2016 Sep 20; 49():371-374. PubMed ID: 27494305
    [Abstract] [Full Text] [Related]

  • 17. Gait regularity assessed by wearable sensors: Comparison between accelerometer and gyroscope data for different sensor locations and walking speeds in healthy subjects.
    Scalera GM, Ferrarin M, Rabuffetti M.
    J Biomech; 2020 Dec 02; 113():110115. PubMed ID: 33221581
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. A method for calculating fall risk parameters from discrete stride time series regardless of sensor placement.
    Abiad NA, Houdry E, El Khoury C, Renaudin V, Robert T.
    Gait Posture; 2024 Jun 02; 111():182-184. PubMed ID: 38705036
    [Abstract] [Full Text] [Related]

  • 20. Influence of contextual task constraints on preferred stride parameters and their variabilities during human walking.
    Ojeda LV, Rebula JR, Kuo AD, Adamczyk PG.
    Med Eng Phys; 2015 Oct 02; 37(10):929-36. PubMed ID: 26250066
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.