These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
141 related items for PubMed ID: 32400631
1. Measurement method of optical properties of ex vivo biological tissues of rats in the near-infrared range. Sanchez-Cano A, Saldaña-Díaz JE, Perdices L, Pinilla I, Salgado-Remacha FJ, Jarabo S. Appl Opt; 2020 May 01; 59(13):D111-D117. PubMed ID: 32400631 [Abstract] [Full Text] [Related]
2. Spectral attenuation of brain and retina tissues in the near-infrared range measured using a fiber-based supercontinuum device. Saldaña-Díaz JE, Jarabo S, Salgado-Remacha FJ, Perdices L, Pinilla I, Sánchez-Cano A. J Biophotonics; 2017 Sep 01; 10(9):1105-1109. PubMed ID: 28464552 [Abstract] [Full Text] [Related]
3. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro]. Wei HJ, Xing D, Wu GY, Jin Y, Gu HM. Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May 01; 24(5):524-8. PubMed ID: 15769036 [Abstract] [Full Text] [Related]
4. Optical and thermal properties of nasal septal cartilage. Youn JI, Telenkov SA, Kim E, Bhavaraju NC, Wong BJ, Valvano JW, Milner TE. Lasers Surg Med; 2000 May 01; 27(2):119-28. PubMed ID: 10960818 [Abstract] [Full Text] [Related]
5. Optical properties of normal and diseased human breast tissues in the visible and near infrared. Peters VG, Wyman DR, Patterson MS, Frank GL. Phys Med Biol; 1990 Sep 01; 35(9):1317-34. PubMed ID: 2236211 [Abstract] [Full Text] [Related]
6. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue. Alhamami M, Kolios MC, Tavakkoli J. Med Phys; 2014 May 01; 41(5):053502. PubMed ID: 24784408 [Abstract] [Full Text] [Related]
7. Analysis of tissue optical coefficients using an approximate equation valid for comparable absorption and scattering. Arnfield MR, Mathew RP, Tulip J, McPhee MS. Phys Med Biol; 1992 Jun 01; 37(6):1219-30. PubMed ID: 1626022 [Abstract] [Full Text] [Related]
9. Tutorial on methods for estimation of optical absorption and scattering properties of tissue. Tao R, Gröhl J, Hacker L, Pifferi A, Roblyer D, Bohndiek SE. J Biomed Opt; 2024 Jun 15; 29(6):060801. PubMed ID: 38864093 [Abstract] [Full Text] [Related]
10. Changes in optical properties of ex vivo rat prostate due to heating. Skinner MG, Everts S, Reid AD, Vitkin IA, Lilge L, Sherar MD. Phys Med Biol; 2000 May 15; 45(5):1375-86. PubMed ID: 10843110 [Abstract] [Full Text] [Related]
12. Deep optical imaging of tissue using the second and third near-infrared spectral windows. Sordillo LA, Pu Y, Pratavieira S, Budansky Y, Alfano RR. J Biomed Opt; 2014 May 15; 19(5):056004. PubMed ID: 24805808 [Abstract] [Full Text] [Related]
13. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model. Salomatina E, Yaroslavsky AN. Phys Med Biol; 2008 Jun 07; 53(11):2797-807. PubMed ID: 18451462 [Abstract] [Full Text] [Related]
14. Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties. Wilson RH, Nadeau KP, Jaworski FB, Rowland R, Nguyen JQ, Crouzet C, Saager RB, Choi B, Tromberg BJ, Durkin AJ. J Biomed Opt; 2014 Aug 07; 19(8):086011. PubMed ID: 25120175 [Abstract] [Full Text] [Related]
15. Spectral attenuation of the mouse, rat, pig and human lenses from wavelengths 360 nm to 1020 nm. Lei B, Yao G. Exp Eye Res; 2006 Sep 07; 83(3):610-4. PubMed ID: 16682025 [Abstract] [Full Text] [Related]
17. Optical properties of mice skull bone in the 455- to 705-nm range. Haleh S, Hirac G, Frédéric P. J Biomed Opt; 2017 Jan 01; 22(1):10503. PubMed ID: 28138691 [Abstract] [Full Text] [Related]
18. Frostig RD, Rector DM, Yao X, Harper RM, George JS. ; 2009 Jan 01. PubMed ID: 26844322 [Abstract] [Full Text] [Related]