These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


300 related items for PubMed ID: 32400826

  • 21. Methanol-Assisted Autocatalysis in Catalytic Methanol Synthesis.
    Thrane J, Kuld S, Nielsen ND, Jensen AD, Sehested J, Christensen JM.
    Angew Chem Int Ed Engl; 2020 Oct 05; 59(41):18189-18193. PubMed ID: 32598081
    [Abstract] [Full Text] [Related]

  • 22. Nanometric Cu-ZnO Particles Supported on N-Doped Graphitic Carbon as Catalysts for the Selective CO2 Hydrogenation to Methanol.
    Peng L, Jurca B, Garcia-Baldovi A, Tian L, Sastre G, Primo A, Parvulescu V, Dhakshinamoorthy A, Garcia H.
    Nanomaterials (Basel); 2024 Mar 06; 14(5):. PubMed ID: 38470804
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Methanol Synthesis from CO2/CO Mixture on Cu-Zn Catalysts from Microkinetics-Guided Machine Learning Pathway Search.
    Shi YF, Kang PL, Shang C, Liu ZP.
    J Am Chem Soc; 2022 Jul 27; 144(29):13401-13414. PubMed ID: 35848119
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. A DFT-based microkinetic study on methanol synthesis from CO2 hydrogenation over the In2O3 catalyst.
    Zhou Z, Qin B, Li S, Sun Y.
    Phys Chem Chem Phys; 2021 Jan 28; 23(3):1888-1895. PubMed ID: 33458735
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Mechanistic insight into effect of doping of Ni on CO2 reduction on the (111) facet of Cu: thermodynamic and kinetic analyses of the elementary steps.
    Ou LH.
    J Mol Model; 2016 Oct 28; 22(10):246. PubMed ID: 27678451
    [Abstract] [Full Text] [Related]

  • 29. Performance of Cu/ZnO Nanosheets on Electrospun Al2O3 Nanofibers in CO2 Catalytic Hydrogenation to Methanol and Dimethyl Ether.
    Maor II, Heyte S, Elishav O, Mann-Lahav M, Thuriot-Roukos J, Paul S, Grader GS.
    Nanomaterials (Basel); 2023 Feb 05; 13(4):. PubMed ID: 36839003
    [Abstract] [Full Text] [Related]

  • 30. Significant Roles of Surface Hydrides in Enhancing the Performance of Cu/BaTiO2.8 H0.2 Catalyst for CO2 Hydrogenation to Methanol.
    He Y, Li Y, Lei M, Polo-Garzon F, Perez-Aguilar J, Bare SR, Formo E, Kim H, Daemen L, Cheng Y, Hong K, Chi M, Jiang DE, Wu Z.
    Angew Chem Int Ed Engl; 2024 Jan 02; 63(1):e202313389. PubMed ID: 37906130
    [Abstract] [Full Text] [Related]

  • 31. CO2 -to-Methanol Hydrogenation on Zirconia-Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal-Support Interface.
    Larmier K, Liao WC, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Comas-Vives A, Copéret C.
    Angew Chem Int Ed Engl; 2017 Feb 20; 56(9):2318-2323. PubMed ID: 28111850
    [Abstract] [Full Text] [Related]

  • 32. Cesium-Induced Active Sites for C-C Coupling and Ethanol Synthesis from CO2 Hydrogenation on Cu/ZnO(0001̅) Surfaces.
    Wang X, Ramírez PJ, Liao W, Rodriguez JA, Liu P.
    J Am Chem Soc; 2021 Aug 25; 143(33):13103-13112. PubMed ID: 34297573
    [Abstract] [Full Text] [Related]

  • 33. Cylindrical shaped ZnO combined Cu catalysts for the hydrogenation of CO2 to methanol.
    Lei H, Zheng R, Liu Y, Gao J, Chen X, Feng X.
    RSC Adv; 2019 Apr 30; 9(24):13696-13704. PubMed ID: 35519552
    [Abstract] [Full Text] [Related]

  • 34. Flame Synthesis of Cu/ZnO-CeO2 Catalysts: Synergistic Metal-Support Interactions Promote CH3OH Selectivity in CO2 Hydrogenation.
    Zhu J, Ciolca D, Liu L, Parastaev A, Kosinov N, Hensen EJM.
    ACS Catal; 2021 Apr 16; 11(8):4880-4892. PubMed ID: 33898079
    [Abstract] [Full Text] [Related]

  • 35. Insight into the mechanism for the methanol synthesis via the hydrogenation of CO2 over a Co-modified Cu(100) surface: A DFT study.
    Qiu M, Tao H, Li R, Li Y, Huang X, Chen W, Su W, Zhang Y.
    J Chem Phys; 2016 Oct 07; 145(13):134701. PubMed ID: 27782435
    [Abstract] [Full Text] [Related]

  • 36. Synthesis of methanol from CO2 hydrogenation promoted by dissociative adsorption of hydrogen on a Ga3Ni5(221) surface.
    Tang Q, Shen Z, Huang L, He T, Adidharma H, Russell AG, Fan M.
    Phys Chem Chem Phys; 2017 Jul 19; 19(28):18539-18555. PubMed ID: 28685170
    [Abstract] [Full Text] [Related]

  • 37. DFT and microkinetic investigation of methanol synthesis via CO2 hydrogenation on Ni(111)-based surfaces.
    Maulana AL, Putra RID, Saputro AG, Agusta MK, Nugraha, Dipojono HK.
    Phys Chem Chem Phys; 2019 Sep 18; 21(36):20276-20286. PubMed ID: 31490485
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Hydrogenation of Formate Species Using Atomic Hydrogen on a Cu(111) Model Catalyst.
    Takeyasu K, Sawaki Y, Imabayashi T, Putra SEM, Halim HH, Quan J, Hamamoto Y, Hamada I, Morikawa Y, Kondo T, Fujitani T, Nakamura J.
    J Am Chem Soc; 2022 Jul 13; 144(27):12158-12166. PubMed ID: 35762507
    [Abstract] [Full Text] [Related]

  • 40. CO2 Hydrogenation over Copper/ZnO Single-Atom Catalysts: Water-Promoted Transient Synthesis of Methanol.
    Wu W, Wang Y, Luo L, Wang M, Li Z, Chen Y, Wang Z, Chai J, Cen Z, Shi Y, Zhao J, Zeng J, Li H.
    Angew Chem Int Ed Engl; 2022 Nov 25; 61(48):e202213024. PubMed ID: 36173974
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.