These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 32405667

  • 1. Pyridinium porphyrins and AuNPs mediated bionetworks as SPR signal amplification tags for the ultrasensitive assay of brain natriuretic peptide.
    Zhu Z, Li H, Xiang Y, Koh K, Hu X, Chen H.
    Mikrochim Acta; 2020 May 13; 187(6):327. PubMed ID: 32405667
    [Abstract] [Full Text] [Related]

  • 2. Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin.
    Bai Y, Feng F, Zhao L, Wang C, Wang H, Tian M, Qin J, Duan Y, He X.
    Biosens Bioelectron; 2013 Sep 15; 47():265-70. PubMed ID: 23584389
    [Abstract] [Full Text] [Related]

  • 3. Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform.
    Jang HR, Wark AW, Baek SH, Chung BH, Lee HJ.
    Anal Chem; 2014 Jan 07; 86(1):814-9. PubMed ID: 24328254
    [Abstract] [Full Text] [Related]

  • 4. Analyte-resolved magnetoplasmonic nanocomposite to enhance SPR signals and dual recognition strategy for detection of BNP in serum samples.
    Zhao J, Liang D, Gao S, Hu X, Koh K, Chen H.
    Biosens Bioelectron; 2019 Sep 15; 141():111440. PubMed ID: 31233987
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Analyte induced AuNPs aggregation enhanced surface plasmon resonance for sensitive detection of paraquat.
    Dong H, Zou F, Hu X, Zhu H, Koh K, Chen H.
    Biosens Bioelectron; 2018 Oct 15; 117():605-612. PubMed ID: 30005380
    [Abstract] [Full Text] [Related]

  • 7. In situ template generation of silver nanoparticles as amplification tags for ultrasensitive surface plasmon resonance biosensing of microRNA.
    Wang X, Hou T, Lin H, Lv W, Li H, Li F.
    Biosens Bioelectron; 2019 Jul 15; 137():82-87. PubMed ID: 31082648
    [Abstract] [Full Text] [Related]

  • 8. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy.
    Liu R, Wang Q, Li Q, Yang X, Wang K, Nie W.
    Biosens Bioelectron; 2017 Jan 15; 87():433-438. PubMed ID: 27589408
    [Abstract] [Full Text] [Related]

  • 9. Magnetic gold nanocomposite and aptamer assisted triple recognition electrochemical immunoassay for determination of brain natriuretic peptide.
    Zhao J, Zhu ZZ, Huang X, Hu X, Chen H.
    Mikrochim Acta; 2020 Mar 16; 187(4):231. PubMed ID: 32180025
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles.
    Yang L, Sun H, Wang X, Yao W, Zhang W, Jiang L.
    Mikrochim Acta; 2019 Apr 27; 186(5):308. PubMed ID: 31030275
    [Abstract] [Full Text] [Related]

  • 12. Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules.
    Wang J, Munir A, Zhu Z, Zhou HS.
    Anal Chem; 2010 Aug 15; 82(16):6782-9. PubMed ID: 20704367
    [Abstract] [Full Text] [Related]

  • 13. Surface plasmon resonance assay for exosomes based on aptamer recognition and polydopamine-functionalized gold nanoparticles for signal amplification.
    Liao G, Liu X, Yang X, Wang Q, Geng X, Zou L, Liu Y, Li S, Zheng Y, Wang K.
    Mikrochim Acta; 2020 Mar 30; 187(4):251. PubMed ID: 32232575
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon.
    Chen W, Li Z, Cheng W, Wu T, Li J, Li X, Liu L, Bai H, Ding S, Li X, Yu X.
    J Nanobiotechnology; 2021 Dec 24; 19(1):450. PubMed ID: 34952586
    [Abstract] [Full Text] [Related]

  • 18. Dual-aptamer-based voltammetric biosensor for the Mycobacterium tuberculosis antigen MPT64 by using a gold electrode modified with a peroxidase loaded composite consisting of gold nanoparticles and a Zr(IV)/terephthalate metal-organic framework.
    Li N, Huang X, Sun D, Yu W, Tan W, Luo Z, Chen Z.
    Mikrochim Acta; 2018 Nov 12; 185(12):543. PubMed ID: 30421038
    [Abstract] [Full Text] [Related]

  • 19. A sandwich-type electrochemical aptasensor for the carcinoembryonic antigen via biocatalytic precipitation amplification and by using gold nanoparticle composites.
    Xu L, Liu Z, Lei S, Huang D, Zou L, Ye B.
    Mikrochim Acta; 2019 Jun 26; 186(7):473. PubMed ID: 31243610
    [Abstract] [Full Text] [Related]

  • 20. High-Sensitive Assay of Nucleic Acid Using Tetrahedral DNA Probes and DNA Concatamers with a Surface-Enhanced Raman Scattering/Surface Plasmon Resonance Dual-Mode Biosensor Based on a Silver Nanorod-Covered Silver Nanohole Array.
    Song C, Jiang X, Yang Y, Zhang J, Larson S, Zhao Y, Wang L.
    ACS Appl Mater Interfaces; 2020 Jul 15; 12(28):31242-31254. PubMed ID: 32608960
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.