These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 32410073
1. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump. Fang P, Du J, Yu S. Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073 [Abstract] [Full Text] [Related]
2. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump. Fang P, Du J, Yu S. Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159 [Abstract] [Full Text] [Related]
4. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Hariharan P, Aycock KI, Buesen M, Day SW, Good BC, Herbertson LH, Steinseifer U, Manning KB, Craven BA, Malinauskas RA. Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585 [Abstract] [Full Text] [Related]
10. Blood Pump Design Variations and Their Influence on Hydraulic Performance and Indicators of Hemocompatibility. Wiegmann L, Boës S, de Zélicourt D, Thamsen B, Schmid Daners M, Meboldt M, Kurtcuoglu V. Ann Biomed Eng; 2018 Mar; 46(3):417-428. PubMed ID: 29094293 [Abstract] [Full Text] [Related]
12. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests. Takiura K, Masuzawa T, Endo S, Wakisaka Y, Tatsumi E, Taenaka Y, Takano H, Yamane T, Nishida M, Asztalos B, Konishi Y, Miyazoe Y, Ito K. Artif Organs; 1998 May; 22(5):393-8. PubMed ID: 9609347 [Abstract] [Full Text] [Related]
13. Experimental and Numerical Investigation of an Axial Rotary Blood Pump. Schüle CY, Thamsen B, Blümel B, Lommel M, Karakaya T, Paschereit CO, Affeld K, Kertzscher U. Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467 [Abstract] [Full Text] [Related]
14. CFD-Based Flow Channel Optimization and Performance Prediction for a Conical Axial Maglev Blood Pump. Yang W, Peng S, Xiao W, Hu Y, Wu H, Li M. Sensors (Basel); 2022 Feb 19; 22(4):. PubMed ID: 35214544 [Abstract] [Full Text] [Related]
15. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Good BC, Manning KB. Artif Organs; 2020 Jul 19; 44(7):E263-E276. PubMed ID: 31971269 [Abstract] [Full Text] [Related]
16. Computational fluid dynamics investigation of a centrifugal blood pump. Legendre D, Antunes P, Bock E, Andrade A, Biscegli JF, Ortiz JP. Artif Organs; 2008 Apr 19; 32(4):342-8. PubMed ID: 18370951 [Abstract] [Full Text] [Related]
18. Computational fluid dynamics design and analysis of a passively suspended Tesla pump left ventricular assist device. Medvitz RB, Boger DA, Izraelev V, Rosenberg G, Paterson EG. Artif Organs; 2011 May 19; 35(5):522-33. PubMed ID: 21595722 [Abstract] [Full Text] [Related]
19. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study. Thamsen B, Mevert R, Lommel M, Preikschat P, Gaebler J, Krabatsch T, Kertzscher U, Hennig E, Affeld K. Int J Artif Organs; 2016 Jun 15; 39(4):178-83. PubMed ID: 27034319 [Abstract] [Full Text] [Related]
20. Hemodynamic evaluation and in vitro hemolysis evaluation of a novel centrifugal pump for extracorporeal membrane oxygenation. Fu M, Liu G, Wang W, Gao B, Ji B, Chang Y, Liu Y. Ann Transl Med; 2021 Apr 15; 9(8):679. PubMed ID: 33987377 [Abstract] [Full Text] [Related] Page: [Next] [New Search]