These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Characterization of the non-Arrhenius behavior of supercooled liquids by modeling nonadditive stochastic systems. Rosa Junior ACP, Cruz C, Santana WS, Moret MA. Phys Rev E; 2019 Aug; 100(2-1):022139. PubMed ID: 31574742 [Abstract] [Full Text] [Related]
3. Significant difference in the dynamics between strong and fragile glass formers. Furukawa A, Tanaka H. Phys Rev E; 2016 Nov; 94(5-1):052607. PubMed ID: 27967142 [Abstract] [Full Text] [Related]
9. Correlating the stretched-exponential and super-Arrhenius behaviors in the structural relaxation of glass-forming liquids. Wang L, Li J, Fecht HJ. J Phys Condens Matter; 2011 Apr 20; 23(15):155102. PubMed ID: 21436503 [Abstract] [Full Text] [Related]
11. Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Saika-Voivod I, Poole PH, Sciortino F. Nature; 2001 Aug 02; 412(6846):514-7. PubMed ID: 11484046 [Abstract] [Full Text] [Related]
12. Dynamics of supercooled water in confined geometry. Bergman R, Swenson J. Nature; 2000 Jan 20; 403(6767):283-6. PubMed ID: 10659841 [Abstract] [Full Text] [Related]
18. Linking rigidity transitions with enthalpic changes at the glass transition and fragility: insight from a simple oscillator model. Micoulaut M. J Phys Condens Matter; 2010 Jul 21; 22(28):285101. PubMed ID: 21399290 [Abstract] [Full Text] [Related]
19. Thermodynamics of viscous flow and elasticity of glass forming liquids in the glass transition range. Rouxel T. J Chem Phys; 2011 Nov 14; 135(18):184501. PubMed ID: 22088069 [Abstract] [Full Text] [Related]
20. Scaling of the hysteresis in the glass transition of glycerol with the temperature scanning rate. Wang YZ, Li Y, Zhang JX. J Chem Phys; 2011 Mar 21; 134(11):114510. PubMed ID: 21428635 [Abstract] [Full Text] [Related] Page: [Next] [New Search]