These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
365 related items for PubMed ID: 32430127
21. VOC source apportionment, reactivity, secondary transformations, and their prioritization using fuzzy-AHP method in a coal-mining city in India. Malik N, Singh V, Kumar K, Elumalai SP. Environ Sci Pollut Res Int; 2024 Apr; 31(17):25406-25423. PubMed ID: 38472578 [Abstract] [Full Text] [Related]
22. Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south China. Zhang Y, Yang W, Simpson I, Huang X, Yu J, Huang Z, Wang Z, Zhang Z, Liu D, Huang Z, Wang Y, Pei C, Shao M, Blake DR, Zheng J, Huang Z, Wang X. Environ Pollut; 2018 Feb; 233():806-819. PubMed ID: 29144986 [Abstract] [Full Text] [Related]
23. Study on the Fingerprint and Atmospheric Activity of Volatile Organic Compounds from Typical Industrial Emissions. Gu X, Chen K, Cai M, Yin Z, Liu X, Li X. Int J Environ Res Public Health; 2023 Feb 16; 20(4):. PubMed ID: 36834214 [Abstract] [Full Text] [Related]
24. Impact of VOCs emission from iron and steel industry on regional O3 and PM2.5 pollutions. Zhang X, Gao S, Fu Q, Han D, Chen X, Fu S, Huang X, Cheng J. Environ Sci Pollut Res Int; 2020 Aug 16; 27(23):28853-28866. PubMed ID: 32418095 [Abstract] [Full Text] [Related]
26. Integrated assessment of volatile organic compounds from industrial biomass boilers in China: emission characteristics, influencing factors, and ozone formation potential. Shi R, Yuan Z, Yang L, Huang D, Ma H. Environ Sci Pollut Res Int; 2023 Jan 16; 30(4):9852-9864. PubMed ID: 36063268 [Abstract] [Full Text] [Related]
29. [Characteristics and Reactivity of VOCs in a Typical Industrial City in Summer]. Qin T, Li LM, Wang XW, Yang W, Wang XL, Xu B, Geng CM. Huan Jing Ke Xue; 2022 Aug 08; 43(8):3934-3943. PubMed ID: 35971692 [Abstract] [Full Text] [Related]
30. Characteristics, source apportionment and health risks of ambient VOCs during high ozone period at an urban site in central plain, China. Li Y, Yin S, Yu S, Yuan M, Dong Z, Zhang D, Yang L, Zhang R. Chemosphere; 2020 Jul 08; 250():126283. PubMed ID: 32120148 [Abstract] [Full Text] [Related]
31. Emission of VOCs from service stations in Beijing: Species characteristics and pollutants co-control based on SOA and O3. Hu W, Liang W, Huang Y, Liu M, Yang H, Ren B, Yang T. J Environ Manage; 2023 Jun 15; 336():117614. PubMed ID: 36933513 [Abstract] [Full Text] [Related]
32. Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality. Gu S, Guenther A, Faiola C. Environ Sci Technol; 2021 Sep 21; 55(18):12191-12201. PubMed ID: 34495669 [Abstract] [Full Text] [Related]
33. Ambient volatile organic compounds in urban and industrial regions in Beijing: Characteristics, source apportionment, secondary transformation and health risk assessment. Liu C, Xin Y, Zhang C, Liu J, Liu P, He X, Mu Y. Sci Total Environ; 2023 Jan 10; 855():158873. PubMed ID: 36126704 [Abstract] [Full Text] [Related]
38. Source characterization of volatile organic compounds in urban Beijing and its links to secondary organic aerosol formation. Liu Q, Sheng J, Wu Y, Ma Z, Sun J, Tian P, Zhao D, Li X, Hu K, Li S, Shen X, Zhang Y, He H, Huang M, Ding D, Liu D. Sci Total Environ; 2023 Feb 20; 860():160469. PubMed ID: 36464057 [Abstract] [Full Text] [Related]