These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y. Theor Appl Genet; 2012 Aug; 125(4):715-29. PubMed ID: 22534790 [Abstract] [Full Text] [Related]
5. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP. Plant Biotechnol J; 2017 May; 15(5):648-657. PubMed ID: 27862889 [Abstract] [Full Text] [Related]
6. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. Yuan M, Zhu J, Gong L, He L, Lee C, Han S, Chen C, He G. BMC Biotechnol; 2019 Apr 29; 19(1):24. PubMed ID: 31035982 [Abstract] [Full Text] [Related]
11. CRISPR/Cas9-Mediated Gene Editing of BnFAD2 and BnFAE1 Modifies Fatty Acid Profiles in Brassica napus. Shi J, Ni X, Huang J, Fu Y, Wang T, Yu H, Zhang Y. Genes (Basel); 2022 Sep 20; 13(10):. PubMed ID: 36292566 [Abstract] [Full Text] [Related]
12. Utility of Arabidopsis KASII Promoter in Development of an Effective CRISPR/Cas9 System for Soybean Genome Editing and Its Application in Engineering of Soybean Seeds Producing Super-High Oleic and Low Saturated Oils. Zheng Y, Guo T, Xia T, Guo S, Chen M, Ye S, Pan T, Xu X, Gan Y, Zhan Y, Zheng T, Zheng Z. J Agric Food Chem; 2024 Oct 02; 72(39):21720-21730. PubMed ID: 39288439 [Abstract] [Full Text] [Related]
13. Production of high oleic/low linoleic rice by genome editing. Abe K, Araki E, Suzuki Y, Toki S, Saika H. Plant Physiol Biochem; 2018 Oct 02; 131():58-62. PubMed ID: 29735369 [Abstract] [Full Text] [Related]
14. Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils. Bai S, Engelen S, Denolf P, Wallis JG, Lynch K, Bengtsson JD, Van Thournout M, Haesendonckx B, Browse J. Plant J; 2019 Apr 02; 98(1):33-41. PubMed ID: 30536486 [Abstract] [Full Text] [Related]
15. Targeted mutagenesis of EOD3 gene in Brassica napus L. regulates seed production. Khan MHU, Hu L, Zhu M, Zhai Y, Khan SU, Ahmar S, Amoo O, Zhang K, Fan C, Zhou Y. J Cell Physiol; 2021 Mar 02; 236(3):1996-2007. PubMed ID: 32841372 [Abstract] [Full Text] [Related]
16. Construction and Analysis of GmFAD2-1A and GmFAD2-2A Soybean Fatty Acid Desaturase Mutants Based on CRISPR/Cas9 Technology. Wu N, Lu Q, Wang P, Zhang Q, Zhang J, Qu J, Wang N. Int J Mol Sci; 2020 Feb 07; 21(3):. PubMed ID: 32046096 [Abstract] [Full Text] [Related]
17. Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes. Bocianowski J, Mikołajczyk K, Bartkowiak-Broda I. J Appl Genet; 2012 Feb 07; 53(1):27-30. PubMed ID: 21912934 [Abstract] [Full Text] [Related]
18. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Jung JH, Kim H, Go YS, Lee SB, Hur CG, Kim HU, Suh MC. Plant Cell Rep; 2011 Oct 07; 30(10):1881-92. PubMed ID: 21647637 [Abstract] [Full Text] [Related]
19. CRISPR/Cas9-Mediated Multiplex Genome Editing of the BnWRKY11 and BnWRKY70 Genes in Brassica napus L. Sun Q, Lin L, Liu D, Wu D, Fang Y, Wu J, Wang Y. Int J Mol Sci; 2018 Sep 11; 19(9):. PubMed ID: 30208656 [Abstract] [Full Text] [Related]
20. Design of high-oleic tobacco (Nicotiana tabacum L.) seed oil by CRISPR-Cas9-mediated knockout of NtFAD2-2. Tian Y, Chen K, Li X, Zheng Y, Chen F. BMC Plant Biol; 2020 May 25; 20(1):233. PubMed ID: 32450806 [Abstract] [Full Text] [Related] Page: [Next] [New Search]