These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 32450060

  • 21. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.
    Samanta SK, Fritsch M, Scherf U, Gomulya W, Bisri SZ, Loi MA.
    Acc Chem Res; 2014 Aug 19; 47(8):2446-56. PubMed ID: 25025887
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Experimental and theoretical comparison of gas desorption energies on metallic and semiconducting single-walled carbon nanotubes.
    Mandeltort L, Chen DL, Saidi WA, Johnson JK, Cole MW, Yates JT.
    J Am Chem Soc; 2013 May 22; 135(20):7768-76. PubMed ID: 23627526
    [Abstract] [Full Text] [Related]

  • 24. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.
    Zhang C, Luo S, Chen W.
    Talanta; 2013 Sep 15; 113():142-7. PubMed ID: 23708636
    [Abstract] [Full Text] [Related]

  • 25. Adsorption behavior of DNA-wrapped carbon nanotubes on self-assembled monolayer surfaces.
    Zangmeister RA, Maslar JE, Opdahl A, Tarlov MJ.
    Langmuir; 2007 May 22; 23(11):6252-6. PubMed ID: 17455960
    [Abstract] [Full Text] [Related]

  • 26. Carbon nanotubes as photoprotectors of organic dyes: reversible photoreaction instead of permanent photo-oxidation.
    Long D, Lin H, Scheblykin IG.
    Phys Chem Chem Phys; 2011 Apr 07; 13(13):5771-7. PubMed ID: 21321723
    [Abstract] [Full Text] [Related]

  • 27. Differences in the response of the near-infrared absorbance spectra of single-walled carbon nanotubes; Effects of chirality and wrapping polymers.
    Matsukawa Y, Ohura S, Umemura K.
    Colloids Surf B Biointerfaces; 2018 Dec 01; 172():684-689. PubMed ID: 30243222
    [Abstract] [Full Text] [Related]

  • 28. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ, Krauss TD.
    Acc Chem Res; 2008 Feb 01; 41(2):235-43. PubMed ID: 18281946
    [Abstract] [Full Text] [Related]

  • 29. Hybridization of papain molecules and DNA-wrapped single-walled carbon nanotubes evaluated by atomic force microscopy in fluids.
    Kitamura M, Umemura K.
    Sci Rep; 2023 Mar 24; 13(1):4833. PubMed ID: 36964258
    [Abstract] [Full Text] [Related]

  • 30. Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions.
    Yang R, Tang Z, Yan J, Kang H, Kim Y, Zhu Z, Tan W.
    Anal Chem; 2008 Oct 01; 80(19):7408-13. PubMed ID: 18771233
    [Abstract] [Full Text] [Related]

  • 31. Simulation of adsorption of DNA on carbon nanotubes.
    Zhao X, Johnson JK.
    J Am Chem Soc; 2007 Aug 29; 129(34):10438-45. PubMed ID: 17676840
    [Abstract] [Full Text] [Related]

  • 32. Human fibrinogen adsorption onto single-walled carbon nanotube films.
    Song L, Meng J, Zhong J, Liu L, Dou X, Liu D, Zhao X, Luo S, Zhang Z, Xiang Y, Xu H, Zhou W, Wu Z, Xie S.
    Colloids Surf B Biointerfaces; 2006 Apr 15; 49(1):66-70. PubMed ID: 16600577
    [Abstract] [Full Text] [Related]

  • 33. Boronic acid library for selective, reversible near-infrared fluorescence quenching of surfactant suspended single-walled carbon nanotubes in response to glucose.
    Yum K, Ahn JH, McNicholas TP, Barone PW, Mu B, Kim JH, Jain RM, Strano MS.
    ACS Nano; 2012 Jan 24; 6(1):819-30. PubMed ID: 22133474
    [Abstract] [Full Text] [Related]

  • 34. Single-walled carbon nanotube as an effective quencher.
    Zhu Z, Yang R, You M, Zhang X, Wu Y, Tan W.
    Anal Bioanal Chem; 2010 Jan 24; 396(1):73-83. PubMed ID: 19898820
    [Abstract] [Full Text] [Related]

  • 35. Effects of ionic surfactant adsorption on single-walled carbon nanotube thin film devices in aqueous solutions.
    Fu Q, Liu J.
    Langmuir; 2005 Feb 15; 21(4):1162-5. PubMed ID: 15697254
    [Abstract] [Full Text] [Related]

  • 36. Structural study of single-walled carbon nanotube films doped by a solution method.
    Takenobu T, Takahashi T, Akima N, Shiraishi M, Kataura H, Iwasa Y.
    J Nanosci Nanotechnol; 2007 Oct 15; 7(10):3533-6. PubMed ID: 18330170
    [Abstract] [Full Text] [Related]

  • 37. Chirality-Selective Photoluminescence Enhancement of ssDNA-Wrapped Single-Walled Carbon Nanotubes Modified with Gold Nanoparticles.
    Yang J, Zhao Q, Lyu M, Zhang Z, Wang X, Wang M, Gao Z, Li Y.
    Small; 2016 Jun 15; 12(23):3164-71. PubMed ID: 27128378
    [Abstract] [Full Text] [Related]

  • 38. Fused porphyrin-single-walled carbon nanotube hybrids: efficient formation and photophysical characterization.
    Zhong Q, Diev VV, Roberts ST, Antunez PD, Brutchey RL, Bradforth SE, Thompson ME.
    ACS Nano; 2013 Apr 23; 7(4):3466-75. PubMed ID: 23477287
    [Abstract] [Full Text] [Related]

  • 39. Thermodynamics for the Formation of Double-Stranded DNA-Single-Walled Carbon Nanotube Hybrids.
    Shiraki T, Tsuzuki A, Toshimitsu F, Nakashima N.
    Chemistry; 2016 Mar 24; 22(14):4774-9. PubMed ID: 26872299
    [Abstract] [Full Text] [Related]

  • 40. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC, Yudasaka M, Dresselhaus MS.
    J Nanosci Nanotechnol; 2004 Sep 24; 4(7):691-703. PubMed ID: 15570946
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.