These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


220 related items for PubMed ID: 32455887

  • 1. Environmental Monitoring of Methane with Quartz-Enhanced Photoacoustic Spectroscopy Exploiting an Electronic Hygrometer to Compensate the H2O Influence on the Sensor Signal.
    Elefante A, Menduni G, Rossmadl H, Mackowiak V, Giglio M, Sampaolo A, Patimisco P, Passaro VMN, Spagnolo V.
    Sensors (Basel); 2020 May 22; 20(10):. PubMed ID: 32455887
    [Abstract] [Full Text] [Related]

  • 2. Fiber-Coupled Quartz-Enhanced Photoacoustic Spectroscopy System for Methane and Ethane Monitoring in the Near-Infrared Spectral Range.
    Menduni G, Sgobba F, Russo SD, Ranieri AC, Sampaolo A, Patimisco P, Giglio M, Passaro VMN, Csutak S, Assante D, Ranieri E, Geoffrion E, Spagnolo V.
    Molecules; 2020 Nov 28; 25(23):. PubMed ID: 33260601
    [Abstract] [Full Text] [Related]

  • 3. Simultaneous Monitoring of Atmospheric CH4, N2O, and H2O Using a Single Gas Sensor Based on Mid-IR Quartz-Enhanced Photoacoustic Spectroscopy.
    Yi H, Laurent O, Schilt S, Ramonet M, Gao X, Dong L, Chen W.
    Anal Chem; 2022 Dec 20; 94(50):17522-17532. PubMed ID: 36468977
    [Abstract] [Full Text] [Related]

  • 4. Characterization of H2S QEPAS detection in methane-based gas leaks dispersed into environment.
    Olivieri M, Menduni G, Giglio M, Sampaolo A, Patimisco P, Wu H, Dong L, Spagnolo V.
    Photoacoustics; 2023 Feb 20; 29():100438. PubMed ID: 36582842
    [Abstract] [Full Text] [Related]

  • 5. A Miniaturized 3D-Printed Quartz-Enhanced Photoacoustic Spectroscopy Sensor for Methane Detection with a High-Power Diode Laser.
    Chen Y, Liang T, Qiao S, Ma Y.
    Sensors (Basel); 2023 Apr 17; 23(8):. PubMed ID: 37112375
    [Abstract] [Full Text] [Related]

  • 6. Dual-Gas Quartz-Enhanced Photoacoustic Sensor for Simultaneous Detection of Methane/Nitrous Oxide and Water Vapor.
    Elefante A, Giglio M, Sampaolo A, Menduni G, Patimisco P, Passaro VMN, Wu H, Rossmadl H, Mackowiak V, Cable A, Tittel FK, Dong L, Spagnolo V.
    Anal Chem; 2019 Oct 15; 91(20):12866-12873. PubMed ID: 31500409
    [Abstract] [Full Text] [Related]

  • 7. High-concentration methane and ethane QEPAS detection employing partial least squares regression to filter out energy relaxation dependence on gas matrix composition.
    Menduni G, Zifarelli A, Sampaolo A, Patimisco P, Giglio M, Amoroso N, Wu H, Dong L, Bellotti R, Spagnolo V.
    Photoacoustics; 2022 Jun 15; 26():100349. PubMed ID: 35345809
    [Abstract] [Full Text] [Related]

  • 8. Multi-gas quartz-enhanced photoacoustic sensor for environmental monitoring exploiting a Vernier effect-based quantum cascade laser.
    Zifarelli A, De Palo R, Patimisco P, Giglio M, Sampaolo A, Blaser S, Butet J, Landry O, Müller A, Spagnolo V.
    Photoacoustics; 2022 Dec 15; 28():100401. PubMed ID: 36105377
    [Abstract] [Full Text] [Related]

  • 9. Assessment of vibrational-translational relaxation dynamics of in a wet-nitrogen matrix through QEPAS.
    Olivieri M, Giglio M, Dello Russo S, Menduni G, Zifarelli A, Patimisco P, Sampaolo A, Wu H, Dong L, Spagnolo V.
    Photoacoustics; 2023 Jun 15; 31():100518. PubMed ID: 37325395
    [Abstract] [Full Text] [Related]

  • 10. Infrared dual-gas CH4/C2H2 sensor system based on dual-channel off-beam quartz-enhanced photoacoustic spectroscopy and time-division multiplexing technique.
    Ye W, Xia Z, Hu L, Luo W, Liu W, Xu X, Zheng C.
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan 15; 285():121908. PubMed ID: 36174401
    [Abstract] [Full Text] [Related]

  • 11. Quartz-enhanced photoacoustic spectroscopy (QEPAS) and Beat Frequency-QEPAS techniques for air pollutants detection: A comparison in terms of sensitivity and acquisition time.
    Li B, Menduni G, Giglio M, Patimisco P, Sampaolo A, Zifarelli A, Wu H, Wei T, Spagnolo V, Dong L.
    Photoacoustics; 2023 Jun 15; 31():100479. PubMed ID: 37255964
    [Abstract] [Full Text] [Related]

  • 12. High-sensitivity methane detection based on QEPAS and H-QEPAS technologies combined with a self-designed 8.7 kHz quartz tuning fork.
    Liang T, Qiao S, Chen Y, He Y, Ma Y.
    Photoacoustics; 2024 Apr 15; 36():100592. PubMed ID: 38322619
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species.
    Dello Russo S, Sampaolo A, Patimisco P, Menduni G, Giglio M, Hoelzl C, Passaro VMN, Wu H, Dong L, Spagnolo V.
    Photoacoustics; 2021 Mar 15; 21():100227. PubMed ID: 33364164
    [Abstract] [Full Text] [Related]

  • 15. Quartz-enhanced photoacoustic spectroscopic methane sensor system using a quartz tuning fork-embedded, double-pass and off-beam configuration.
    Hu L, Zheng C, Zhang M, Yao D, Zheng J, Zhang Y, Wang Y, Tittel FK.
    Photoacoustics; 2020 Jun 15; 18():100174. PubMed ID: 32211294
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.