These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 32477425

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Physiological responses contributing to multiple stress tolerance in Pichia kudriavzevii with potential enhancement for ethanol fermentation.
    Pongcharoen P, Tawong W, Pathaichindachote W, Rod-In W.
    J Biosci Bioeng; 2024 Oct; 138(4):314-323. PubMed ID: 39098474
    [Abstract] [Full Text] [Related]

  • 3. Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass.
    Dolpatcha S, Phong HX, Thanonkeo S, Klanrit P, Yamada M, Thanonkeo P.
    Sci Rep; 2023 Nov 28; 13(1):21000. PubMed ID: 38017261
    [Abstract] [Full Text] [Related]

  • 4. Investigation of stress tolerance of Pichia kudriavzevii for high gravity bioethanol production from steam-exploded wheat straw hydrolysate.
    Hoppert L, Kölling R, Einfalt D.
    Bioresour Technol; 2022 Nov 28; 364():128079. PubMed ID: 36220531
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Metabolomics Study Reveals Biomarker L-Proline as Potential Stress-Protectant Compound for High-Temperature Bioethanol Fermentation by Yeast Pichia kudriavzevii 1P4.
    Khotimah H, Astuti RI, Rafi M, Yuliana ND.
    Appl Biochem Biotechnol; 2023 Aug 28; 195(8):5180-5198. PubMed ID: 37103737
    [Abstract] [Full Text] [Related]

  • 7. Ethanol production from dilute-acid steam exploded lignocellulosic feedstocks using an isolated multistress-tolerant Pichia kudriavzevii strain.
    Yuan SF, Guo GL, Hwang WS.
    Microb Biotechnol; 2017 Nov 28; 10(6):1581-1590. PubMed ID: 28474425
    [Abstract] [Full Text] [Related]

  • 8. Compost as an untapped niche for thermotolerant yeasts capable of high-temperature ethanol production.
    Avchar R, Lanjekar V, Dhakephalkar PK, Dagar SS, Baghela A.
    Lett Appl Microbiol; 2022 Jan 28; 74(1):109-121. PubMed ID: 34714552
    [Abstract] [Full Text] [Related]

  • 9. Bioprospecting thermotolerant yeasts from distillery effluent and molasses for high-temperature ethanol production.
    Avchar R, Lanjekar V, Baghela A.
    J Appl Microbiol; 2022 Feb 28; 132(2):1134-1151. PubMed ID: 34487585
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production.
    Chamnipa N, Thanonkeo S, Klanrit P, Thanonkeo P.
    Braz J Microbiol; 2018 Feb 28; 49(2):378-391. PubMed ID: 29154013
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Bioprospecting of thermo- and osmo-tolerant fungi from mango pulp-peel compost for bioethanol production.
    Dandi ND, Dandi BN, Chaudhari AB.
    Antonie Van Leeuwenhoek; 2013 Apr 28; 103(4):723-36. PubMed ID: 23180376
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The potential of multistress tolerant yeast, Saccharomycodes ludwigii, for second-generation bioethanol production.
    Pilap W, Thanonkeo S, Klanrit P, Thanonkeo P.
    Sci Rep; 2022 Dec 21; 12(1):22062. PubMed ID: 36543886
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.