These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 32477425

  • 21. Physiological characterization of a new thermotolerant yeast strain isolated during Brazilian ethanol production, and its application in high-temperature fermentation.
    Prado CD, Mandrujano GPL, Souza JP, Sgobbi FB, Novaes HR, da Silva JPMO, Alves MHR, Eliodório KP, Cunha GCG, Giudici R, Procópio DP, Basso TO, Malavazi I, Cunha AF.
    Biotechnol Biofuels; 2020; 13():178. PubMed ID: 33117432
    [Abstract] [Full Text] [Related]

  • 22. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation.
    Mukherjee V, Radecka D, Aerts G, Verstrepen KJ, Lievens B, Thevelein JM.
    Biotechnol Biofuels; 2017; 10():216. PubMed ID: 28924451
    [Abstract] [Full Text] [Related]

  • 23. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate.
    Yuangsaard N, Yongmanitchai W, Yamada M, Limtong S.
    Antonie Van Leeuwenhoek; 2013 Mar; 103(3):577-88. PubMed ID: 23132277
    [Abstract] [Full Text] [Related]

  • 24. Isolation and identification of epiphytic Pichia kudriavzevii from loquat peels and investigation of its fermentation characteristics for liquor production.
    Xu Q, Huang W, Li Y, Cai J, Gao X, Bai X, Liu W, Zhang L, Zhu L.
    Arch Microbiol; 2024 Oct 19; 206(11):440. PubMed ID: 39425794
    [Abstract] [Full Text] [Related]

  • 25. Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production.
    Favaro L, Basaglia M, Trento A, Van Rensburg E, García-Aparicio M, Van Zyl WH, Casella S.
    Biotechnol Biofuels; 2013 Nov 29; 6(1):168. PubMed ID: 24286305
    [Abstract] [Full Text] [Related]

  • 26. Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF.
    Pandey AK, Kumar M, Kumari S, Kumari P, Yusuf F, Jakeer S, Naz S, Chandna P, Bhatnagar I, Gaur NA.
    Biotechnol Biofuels; 2019 Nov 29; 12():40. PubMed ID: 30858877
    [Abstract] [Full Text] [Related]

  • 27. Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice.
    Díaz-Nava LE, Montes-Garcia N, Domínguez JM, Aguilar-Uscanga MG.
    Bioprocess Biosyst Eng; 2017 Jul 29; 40(7):1069-1077. PubMed ID: 28447168
    [Abstract] [Full Text] [Related]

  • 28. Overexpression of PkINO1 improves ethanol resistance of Pichia kudriavzevii N77-4 isolated from the Korean traditional fermentation starter nuruk.
    Sugiyama M, Baek SY, Takashima S, Miyashita N, Ishida K, Mun J, Yeo SH.
    J Biosci Bioeng; 2018 Dec 29; 126(6):682-689. PubMed ID: 30401451
    [Abstract] [Full Text] [Related]

  • 29. Sequential Production of ᴅ-xylonate and Ethanol from Non-Detoxified Corncob at Low-pH by Pichia kudriavzevii via a Two-Stage Fermentation Strategy.
    Ji H, Xu K, Dong X, Sun D, Jin L.
    J Fungi (Basel); 2021 Dec 03; 7(12):. PubMed ID: 34947020
    [Abstract] [Full Text] [Related]

  • 30. Current state-of-the-art in ethanol production from lignocellulosic feedstocks.
    Robak K, Balcerek M.
    Microbiol Res; 2020 Nov 03; 240():126534. PubMed ID: 32683278
    [Abstract] [Full Text] [Related]

  • 31. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation.
    Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM.
    FEMS Yeast Res; 2015 Sep 03; 15(6):. PubMed ID: 26126524
    [Abstract] [Full Text] [Related]

  • 32. Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2.
    Rodrussamee N, Sattayawat P, Yamada M.
    BMC Microbiol; 2018 Jul 13; 18(1):73. PubMed ID: 30005621
    [Abstract] [Full Text] [Related]

  • 33. Efficient ethanol production from corncob residues by repeated fermentation of an adapted yeast.
    Fan C, Qi K, Xia XX, Zhong JJ.
    Bioresour Technol; 2013 May 13; 136():309-15. PubMed ID: 23567696
    [Abstract] [Full Text] [Related]

  • 34. Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol.
    Wimalasena TT, Greetham D, Marvin ME, Liti G, Chandelia Y, Hart A, Louis EJ, Phister TG, Tucker GA, Smart KA.
    Microb Cell Fact; 2014 Mar 27; 13(1):47. PubMed ID: 24670111
    [Abstract] [Full Text] [Related]

  • 35. Cooperative Response of Pichia kudriavzevii and Saccharomyces cerevisiae to Lactic Acid Stress in Baijiu Fermentation.
    Deng N, Du H, Xu Y.
    J Agric Food Chem; 2020 Apr 29; 68(17):4903-4911. PubMed ID: 32180399
    [Abstract] [Full Text] [Related]

  • 36. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W, Tekere M.
    Crit Rev Biotechnol; 2011 Mar 29; 31(1):20-31. PubMed ID: 20513164
    [Abstract] [Full Text] [Related]

  • 37. Biovalorization potential of peels of Ananas cosmosus (L.) Merr. for ethanol production by Pichia stipitis NCIM 3498 & Pachysolen tannophilus MTCC 1077.
    Bhatia L, Johri S.
    Indian J Exp Biol; 2015 Dec 29; 53(12):819-27. PubMed ID: 26742327
    [Abstract] [Full Text] [Related]

  • 38. Low-pH production of d-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7.
    Park HJ, Bae JH, Ko HJ, Lee SH, Sung BH, Han JI, Sohn JH.
    Biotechnol Bioeng; 2018 Sep 29; 115(9):2232-2242. PubMed ID: 29896854
    [Abstract] [Full Text] [Related]

  • 39. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol.
    Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, Sugiyama M, Kaneko Y, Boonchird C, Harashima S.
    N Biotechnol; 2012 Feb 15; 29(3):379-86. PubMed ID: 21820088
    [Abstract] [Full Text] [Related]

  • 40. Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production.
    Hemansi, Himanshu, Patel AK, Saini JK, Singhania RR.
    Bioresour Technol; 2022 Jan 15; 344(Pt B):126247. PubMed ID: 34740795
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.