These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


938 related items for PubMed ID: 32490846

  • 1. Machine Learning to Detect Self-Reporting of Symptoms, Testing Access, and Recovery Associated With COVID-19 on Twitter: Retrospective Big Data Infoveillance Study.
    Mackey T, Purushothaman V, Li J, Shah N, Nali M, Bardier C, Liang B, Cai M, Cuomo R.
    JMIR Public Health Surveill; 2020 Jun 08; 6(2):e19509. PubMed ID: 32490846
    [Abstract] [Full Text] [Related]

  • 2. Big Data, Natural Language Processing, and Deep Learning to Detect and Characterize Illicit COVID-19 Product Sales: Infoveillance Study on Twitter and Instagram.
    Mackey TK, Li J, Purushothaman V, Nali M, Shah N, Bardier C, Cai M, Liang B.
    JMIR Public Health Surveill; 2020 Aug 25; 6(3):e20794. PubMed ID: 32750006
    [Abstract] [Full Text] [Related]

  • 3. Using Reports of Symptoms and Diagnoses on Social Media to Predict COVID-19 Case Counts in Mainland China: Observational Infoveillance Study.
    Shen C, Chen A, Luo C, Zhang J, Feng B, Liao W.
    J Med Internet Res; 2020 May 28; 22(5):e19421. PubMed ID: 32452804
    [Abstract] [Full Text] [Related]

  • 4. Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study.
    Abd-Alrazaq A, Alhuwail D, Househ M, Hamdi M, Shah Z.
    J Med Internet Res; 2020 Apr 21; 22(4):e19016. PubMed ID: 32287039
    [Abstract] [Full Text] [Related]

  • 5. Identification and characterization of tweets related to the 2015 Indiana HIV outbreak: A retrospective infoveillance study.
    Cai M, Shah N, Li J, Chen WH, Cuomo RE, Obradovich N, Mackey TK.
    PLoS One; 2020 Apr 21; 15(8):e0235150. PubMed ID: 32845882
    [Abstract] [Full Text] [Related]

  • 6. Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study.
    Chandrasekaran R, Mehta V, Valkunde T, Moustakas E.
    J Med Internet Res; 2020 Oct 23; 22(10):e22624. PubMed ID: 33006937
    [Abstract] [Full Text] [Related]

  • 7. Temporal and Location Variations, and Link Categories for the Dissemination of COVID-19-Related Information on Twitter During the SARS-CoV-2 Outbreak in Europe: Infoveillance Study.
    Pobiruchin M, Zowalla R, Wiesner M.
    J Med Internet Res; 2020 Aug 28; 22(8):e19629. PubMed ID: 32790641
    [Abstract] [Full Text] [Related]

  • 8. Social Network Analysis of COVID-19 Sentiments: Application of Artificial Intelligence.
    Hung M, Lauren E, Hon ES, Birmingham WC, Xu J, Su S, Hon SD, Park J, Dang P, Lipsky MS.
    J Med Internet Res; 2020 Aug 18; 22(8):e22590. PubMed ID: 32750001
    [Abstract] [Full Text] [Related]

  • 9. COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data.
    Ahmed W, Vidal-Alaball J, Downing J, López Seguí F.
    J Med Internet Res; 2020 May 06; 22(5):e19458. PubMed ID: 32352383
    [Abstract] [Full Text] [Related]

  • 10. Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach.
    Xue J, Chen J, Hu R, Chen C, Zheng C, Su Y, Zhu T.
    J Med Internet Res; 2020 Nov 25; 22(11):e20550. PubMed ID: 33119535
    [Abstract] [Full Text] [Related]

  • 11. Conversations and Medical News Frames on Twitter: Infodemiological Study on COVID-19 in South Korea.
    Park HW, Park S, Chong M.
    J Med Internet Res; 2020 May 05; 22(5):e18897. PubMed ID: 32325426
    [Abstract] [Full Text] [Related]

  • 12. Solution to Detect, Classify, and Report Illicit Online Marketing and Sales of Controlled Substances via Twitter: Using Machine Learning and Web Forensics to Combat Digital Opioid Access.
    Mackey T, Kalyanam J, Klugman J, Kuzmenko E, Gupta R.
    J Med Internet Res; 2018 Apr 27; 20(4):e10029. PubMed ID: 29613851
    [Abstract] [Full Text] [Related]

  • 13. The Hidden Pandemic of Family Violence During COVID-19: Unsupervised Learning of Tweets.
    Xue J, Chen J, Chen C, Hu R, Zhu T.
    J Med Internet Res; 2020 Nov 06; 22(11):e24361. PubMed ID: 33108315
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Public Perception of the COVID-19 Pandemic on Twitter: Sentiment Analysis and Topic Modeling Study.
    Boon-Itt S, Skunkan Y.
    JMIR Public Health Surveill; 2020 Nov 11; 6(4):e21978. PubMed ID: 33108310
    [Abstract] [Full Text] [Related]

  • 17. Identification of Risk Factors and Symptoms of COVID-19: Analysis of Biomedical Literature and Social Media Data.
    Jeon J, Baruah G, Sarabadani S, Palanica A.
    J Med Internet Res; 2020 Oct 02; 22(10):e20509. PubMed ID: 32936770
    [Abstract] [Full Text] [Related]

  • 18. Mining Physicians' Opinions on Social Media to Obtain Insights Into COVID-19: Mixed Methods Analysis.
    Wahbeh A, Nasralah T, Al-Ramahi M, El-Gayar O.
    JMIR Public Health Surveill; 2020 Jun 18; 6(2):e19276. PubMed ID: 32421686
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Using Twitter Comments to Understand People's Experiences of UK Health Care During the COVID-19 Pandemic: Thematic and Sentiment Analysis.
    Ainley E, Witwicki C, Tallett A, Graham C.
    J Med Internet Res; 2021 Oct 25; 23(10):e31101. PubMed ID: 34469327
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 47.