These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
212 related items for PubMed ID: 32494797
21. Ecofriendly and Efficient Luminescent Solar Concentrators Based on Fluorescent Proteins. Sadeghi S, Melikov R, Bahmani Jalali H, Karatum O, Srivastava SB, Conkar D, Firat-Karalar EN, Nizamoglu S. ACS Appl Mater Interfaces; 2019 Mar 06; 11(9):8710-8716. PubMed ID: 30777750 [Abstract] [Full Text] [Related]
22. Quantum-Cutting Luminescent Solar Concentrators Using Ytterbium-Doped Perovskite Nanocrystals. Luo X, Ding T, Liu X, Liu Y, Wu K. Nano Lett; 2019 Jan 09; 19(1):338-341. PubMed ID: 30525678 [Abstract] [Full Text] [Related]
23. Visual Appearance of Nanocrystal-Based Luminescent Solar Concentrators. Moraitis P, Leeuwen GV, Sark WV. Materials (Basel); 2019 Mar 16; 12(6):. PubMed ID: 30884811 [Abstract] [Full Text] [Related]
24. Highly Transparent, Dual-Color Emission, Heterophase Cs3Cu2I5/CsCu2I3 Nanolayer for Transparent Luminescent Solar Concentrators. Gu Y, Yao X, Geng H, Guan G, Hu M, Han M. ACS Appl Mater Interfaces; 2021 Sep 01; 13(34):40798-40805. PubMed ID: 34470110 [Abstract] [Full Text] [Related]
25. High-performance laminated luminescent solar concentrators based on colloidal carbon quantum dots. Zhao H, Liu G, Han G. Nanoscale Adv; 2019 Dec 03; 1(12):4888-4894. PubMed ID: 36133122 [Abstract] [Full Text] [Related]
27. Minimizing Scaling Losses in High-Performance Quantum Dot Luminescent Solar Concentrators for Large-Area Solar Windows. Makarov NS, Korus D, Freppon D, Ramasamy K, Houck DW, Velarde A, Parameswar A, Bergren MR, McDaniel H. ACS Appl Mater Interfaces; 2022 Jul 06; 14(26):29679-29689. PubMed ID: 35729115 [Abstract] [Full Text] [Related]
28. PbSe quantum dot based luminescent solar concentrators. Waldron DL, Preske A, Zawodny JM, Krauss TD, Gupta MC. Nanotechnology; 2017 Mar 03; 28(9):095205. PubMed ID: 28060769 [Abstract] [Full Text] [Related]
29. Highly Luminescent and Stable Organic-Inorganic Hybrid Films for Transparent Luminescent Solar Concentrators. Wang Y, Liu Y, Xie G, Chen J, Li P, Zhang Y, Li H. ACS Appl Mater Interfaces; 2022 Feb 02; 14(4):5951-5958. PubMed ID: 35067042 [Abstract] [Full Text] [Related]
30. A perovskite solar cell-photothermal-thermoelectric tandem system for enhanced solar energy utilization. Zhong H, Zhou Y, Wang C, Wan C, Koumoto K, Wang Z, Lin H. Sci Technol Adv Mater; 2024 Feb 02; 25(1):2336399. PubMed ID: 38628978 [Abstract] [Full Text] [Related]
31. Electromagnetic simulations of a photonic luminescent solar concentrator. Gutmann J, Peters M, Bläsi B, Hermle M, Gombert A, Zappe H, Goldschmidt JC. Opt Express; 2012 Mar 12; 20 Suppl 2():A157-67. PubMed ID: 22418664 [Abstract] [Full Text] [Related]
32. Low-Loss, High-Transparency Luminescent Solar Concentrators with a Bioinspired Self-Cleaning Surface. Li X, Qi J, Zhu J, Jia Y, Liu Y, Li Y, Liu H, Li G, Wu K. J Phys Chem Lett; 2022 Oct 06; 13(39):9177-9185. PubMed ID: 36169202 [Abstract] [Full Text] [Related]
33. An autonomous power temperature sensor based on window-integrated transparent PV using sustainable luminescent carbon dots. Correia SFH, Fu L, Dias LMS, Pereira RFP, de Zea Bermudez V, André PS, Ferreira RAS. Nanoscale Adv; 2023 Jun 27; 5(13):3428-3438. PubMed ID: 37383075 [Abstract] [Full Text] [Related]
34. Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling. Mulder CL, Reusswig PD, Velázquez AM, Kim H, Rotschild C, Baldo MA. Opt Express; 2010 Apr 26; 18(9):A79-90. PubMed ID: 20607889 [Abstract] [Full Text] [Related]
35. Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling. Mulder CL, Reusswig PD, Velázquez AM, Kim H, Rotschild C, Baldo MA. Opt Express; 2010 Apr 26; 18 Suppl 1():A79-90. PubMed ID: 20588577 [Abstract] [Full Text] [Related]
36. Red and yellow emissive carbon dots integrated tandem luminescent solar concentrators with significantly improved efficiency. Li J, Zhao H, Zhao X, Gong X. Nanoscale; 2021 Jun 03; 13(21):9561-9569. PubMed ID: 34008686 [Abstract] [Full Text] [Related]
37. Realizing Stable Artificial Photon Energy Harvesting Based on Perovskite Solar Cells for Diverse Applications. Sun H, Deng K, Jiang Y, Ni J, Xiong J, Li L. Small; 2020 Mar 03; 16(10):e1906681. PubMed ID: 32049437 [Abstract] [Full Text] [Related]
38. Greener Luminescent Solar Concentrators with High Loading Contents Based on in Situ Cross-Linked Carbon Nanodots for Enhancing Solar Energy Harvesting and Resisting Concentration-Induced Quenching. Talite MJ, Huang HY, Wu YH, Sena PG, Cai KB, Lin TN, Shen JL, Chou WC, Yuan CT. ACS Appl Mater Interfaces; 2018 Oct 10; 10(40):34184-34192. PubMed ID: 30204408 [Abstract] [Full Text] [Related]
39. Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors. Verbunt PP, Tsoi S, Debije MG, Broer DJ, Bastiaansen CW, Lin CW, de Boer DK. Opt Express; 2012 Sep 10; 20 Suppl 5():A655-68. PubMed ID: 23037532 [Abstract] [Full Text] [Related]
40. Unlocking Higher Power Efficiencies in Luminescent Solar Concentrators through Anisotropic Luminophore Emission. van der Burgt JS, Needell DR, Veeken T, Polman A, Garnett EC, Atwater HA. ACS Appl Mater Interfaces; 2021 Sep 01; 13(34):40742-40753. PubMed ID: 34410098 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]