These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
183 related items for PubMed ID: 32498521
1. Molecular Dynamics Simulations of Water Condensation on Surfaces with Tunable Wettability. Ranathunga DTS, Shamir A, Dai X, Nielsen SO. Langmuir; 2020 Jul 07; 36(26):7383-7391. PubMed ID: 32498521 [Abstract] [Full Text] [Related]
2. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities. Wang X, Xu B, Chen Z, Yang Y, Cao Q. Langmuir; 2020 Aug 11; 36(31):9204-9214. PubMed ID: 32660253 [Abstract] [Full Text] [Related]
3. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation. Gao S, Liu W, Liu Z. Nanoscale; 2019 Jan 03; 11(2):459-466. PubMed ID: 30325374 [Abstract] [Full Text] [Related]
4. Recurrent filmwise and dropwise condensation on a beetle mimetic surface. Hou Y, Yu M, Chen X, Wang Z, Yao S. ACS Nano; 2015 Jan 27; 9(1):71-81. PubMed ID: 25482594 [Abstract] [Full Text] [Related]
5. Dynamic Wettability on the Lubricant-Impregnated Surface: From Nucleation to Growth and Coalescence. Guo L, Tang GH, Kumar S. ACS Appl Mater Interfaces; 2020 Jun 10; 12(23):26555-26565. PubMed ID: 32419445 [Abstract] [Full Text] [Related]
6. Molecular Insight into Bubble Nucleation on the Surface with Wettability Transition at Controlled Temperatures. Bai P, Zhou L, Huang X, Du X. Langmuir; 2021 Jul 27; 37(29):8765-8775. PubMed ID: 34259533 [Abstract] [Full Text] [Related]
7. Effect of surface free energies on the heterogeneous nucleation of water droplet: a molecular dynamics simulation approach. Xu W, Lan Z, Peng BL, Wen RF, Ma XH. J Chem Phys; 2015 Feb 07; 142(5):054701. PubMed ID: 25662654 [Abstract] [Full Text] [Related]
9. Molecular Dynamics Study on the Combined Effects of the Nanostructure and Wettability of Solid Surfaces on Bubble Nucleation. Zhou W, Zhang Y, Wei J. Langmuir; 2022 Jan 25; 38(3):1223-1230. PubMed ID: 34995464 [Abstract] [Full Text] [Related]
11. The Impact of the Electric Field on Surface Condensation of Water Vapor: Insight from Molecular Dynamics Simulation. Wang Q, Xie H, Hu Z, Liu C. Nanomaterials (Basel); 2019 Jan 04; 9(1):. PubMed ID: 30621199 [Abstract] [Full Text] [Related]
12. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration. Liang Y, Tsuji S, Jia J, Tsuji T, Matsuoka T. Acc Chem Res; 2017 Jul 18; 50(7):1530-1540. PubMed ID: 28661135 [Abstract] [Full Text] [Related]
13. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces. Huang D, Ma R, Zhang T, Luo T. ACS Appl Mater Interfaces; 2018 Aug 22; 10(33):28159-28165. PubMed ID: 30056700 [Abstract] [Full Text] [Related]
14. Coarse-grained molecular models of the surface of hair. Weiand E, Ewen JP, Koenig PH, Roiter Y, Page SH, Angioletti-Uberti S, Dini D. Soft Matter; 2022 Mar 02; 18(9):1779-1792. PubMed ID: 35112700 [Abstract] [Full Text] [Related]
15. Rapid and Persistent Suction Condensation on Hydrophilic Surfaces for High-Efficiency Water Collection. Cheng Y, Wang M, Sun J, Liu M, Du B, Liu Y, Jin Y, Wen R, Lan Z, Zhou X, Ma X, Wang Z. Nano Lett; 2021 Sep 08; 21(17):7411-7418. PubMed ID: 34176267 [Abstract] [Full Text] [Related]
20. Evaporation of tiny water aggregation on solid surfaces with different wetting properties. Wang S, Tu Y, Wan R, Fang H. J Phys Chem B; 2012 Nov 29; 116(47):13863-7. PubMed ID: 23051060 [Abstract] [Full Text] [Related] Page: [Next] [New Search]