These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Wu J, Zheng A, Liu Y, Jiao D, Zeng D, Wang X, Cao L, Jiang X. Int J Nanomedicine; 2019; 14():733-751. PubMed ID: 30705589 [Abstract] [Full Text] [Related]
4. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration. Sun J, Li L, Xing F, Yang Y, Gong M, Liu G, Wu S, Luo R, Duan X, Liu M, Zou M, Xiang Z. Stem Cell Res Ther; 2021 Dec 04; 12(1):591. PubMed ID: 34863288 [Abstract] [Full Text] [Related]
6. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Zhao ZH, Ma XL, Zhao B, Tian P, Ma JX, Kang JY, Zhang Y, Guo Y, Sun L. Cell Prolif; 2021 Jul 04; 54(7):e13043. PubMed ID: 34008897 [Abstract] [Full Text] [Related]
7. Bioengineered Osteoinductive Broussonetia kazinoki/Silk Fibroin Composite Scaffolds for Bone Tissue Regeneration. Kim DK, Kim JI, Hwang TI, Sim BR, Khang G. ACS Appl Mater Interfaces; 2017 Jan 18; 9(2):1384-1394. PubMed ID: 28001353 [Abstract] [Full Text] [Related]
8. Aligned graphene/silk fibroin conductive fibrous scaffolds for guiding neurite outgrowth in rat spinal cord neurons. Liu H, Wang Y, Yang Y, Wang A, Huang C, Zhao Z, Li P, Liu M, Fan Y. J Biomed Mater Res A; 2021 Apr 18; 109(4):488-499. PubMed ID: 32515161 [Abstract] [Full Text] [Related]
12. Three-dimensional silk fibroin scaffolds enhance the bone formation and angiogenic differentiation of human amniotic mesenchymal stem cells: a biocompatibility analysis. Li Y, Liu Z, Tang Y, Fan Q, Feng W, Luo C, Dai G, Ge Z, Zhang J, Zou G, Liu Y, Hu N, Huang W. Acta Biochim Biophys Sin (Shanghai); 2020 Jun 20; 52(6):590-602. PubMed ID: 32393968 [Abstract] [Full Text] [Related]
13. Developing a novel calcium magnesium silicate/graphene oxide incorporated silk fibroin porous scaffold with enhanced osteogenesis, angiogenesis and inhibited osteoclastogenesis. Wu T, Li B, Huang W, Zeng X, Shi Y, Lin Z, Lin C, Xu W, Xia H, Zhang T. Biomed Mater; 2022 May 03; 17(3):. PubMed ID: 35395653 [Abstract] [Full Text] [Related]
15. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Lee DH, Tripathy N, Shin JH, Song JE, Cha JG, Min KD, Park CH, Khang G. Int J Biol Macromol; 2017 Feb 03; 95():14-23. PubMed ID: 27818295 [Abstract] [Full Text] [Related]
17. Surface modification of Thai silk fibroin scaffolds with gelatin and chitooligosaccharide for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Wongputtaraksa T, Ratanavaraporn J, Pichyangkura R, Damrongsakkul S. J Biomed Mater Res B Appl Biomater; 2012 Nov 03; 100(8):2307-15. PubMed ID: 23015285 [Abstract] [Full Text] [Related]
18. Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. Sun K, Li H, Li R, Nian Z, Li D, Xu C. Eur J Orthop Surg Traumatol; 2015 Feb 03; 25(2):243-9. PubMed ID: 25118870 [Abstract] [Full Text] [Related]
19. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Tong S, Xu DP, Liu ZM, Du Y, Wang XK. Int J Mol Med; 2016 Aug 03; 38(2):367-80. PubMed ID: 27352815 [Abstract] [Full Text] [Related]