These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


300 related items for PubMed ID: 32515451

  • 1. Vacancy-induced thermal transport in two-dimensional silicon carbide: a reverse non-equilibrium molecular dynamics study.
    Islam ASMJ, Islam MS, Ferdous N, Park J, Hashimoto A.
    Phys Chem Chem Phys; 2020 Jun 24; 22(24):13592-13602. PubMed ID: 32515451
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Effect of phonon scattering by substitutional and structural defects on thermal conductivity of 2D graphene.
    Lee BS.
    J Phys Condens Matter; 2018 Jul 25; 30(29):295302. PubMed ID: 29873305
    [Abstract] [Full Text] [Related]

  • 6. Strong reduction of thermal conductivity of WSe2with introduction of atomic defects.
    Wang B, Yan X, Yan H, Cai Y.
    Nanotechnology; 2022 Apr 20; 33(27):. PubMed ID: 35349994
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Impacts of defects on the mechanical and thermal properties of SiC and GeC monolayers.
    Ren K, Huang L, Shu H, Zhang G, Mu W, Zhang H, Qin H, Zhang G.
    Phys Chem Chem Phys; 2023 Dec 06; 25(47):32378-32386. PubMed ID: 37997047
    [Abstract] [Full Text] [Related]

  • 9. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons.
    Yang H, Tang Y, Gong J, Liu Y, Wang X, Zhao Y, Yang P, Wang S.
    J Mol Model; 2013 Nov 06; 19(11):4781-8. PubMed ID: 24013440
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering.
    Barati M, Vazifehshenas T, Salavati-Fard T, Farmanbar M.
    J Phys Condens Matter; 2018 Apr 18; 30(15):155307. PubMed ID: 29504943
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Vacancy-Induced Thermal Transport and Tensile Mechanical Behavior of Monolayer Honeycomb BeO.
    Islam ASMJ, Islam MS, Mim NZ, Akbar MS, Hasan MS, Islam MR, Stampfl C, Park J.
    ACS Omega; 2022 Feb 08; 7(5):4525-4537. PubMed ID: 35155944
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Size and edge roughness dependence of thermal conductivity for vacancy-defective graphene ribbons.
    Xie G, Shen Y.
    Phys Chem Chem Phys; 2015 Apr 14; 17(14):8822-7. PubMed ID: 25743638
    [Abstract] [Full Text] [Related]

  • 19. Temperature and interlayer coupling induced thermal transport across graphene/2D-SiC van der Waals heterostructure.
    Islam MS, Mia I, Islam ASMJ, Stampfl C, Park J.
    Sci Rep; 2022 Jan 14; 12(1):761. PubMed ID: 35031659
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.