These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
137 related items for PubMed ID: 32517148
1. Improving Xylose Fermentation in Saccharomyces cerevisiae by Expressing Nuclear-Localized Hexokinase 2. Zheng L, Wei S, Wu M, Zhu X, Bao X, Hou J, Liu W, Shen Y. Microorganisms; 2020 Jun 05; 8(6):. PubMed ID: 32517148 [Abstract] [Full Text] [Related]
2. Snf1p/Hxk2p/Mig1p pathway regulates hexose transporters transcript levels, affecting the exponential growth and mitochondrial respiration of Saccharomyces cerevisiae. Carrillo-Garmendia A, Martinez-Ortiz C, Martinez-Garfias JG, Suarez-Sandoval SE, González-Hernández JC, Nava GM, Dufoo-Hurtado MD, Madrigal-Perez LA. Fungal Genet Biol; 2022 Jul 05; 161():103701. PubMed ID: 35526810 [Abstract] [Full Text] [Related]
3. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01. Xu JR, Zhao XQ, Liu CG, Bai FW. Protein Pept Lett; 2018 Jul 05; 25(2):202-207. PubMed ID: 29359658 [Abstract] [Full Text] [Related]
4. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Rodríguez A, De La Cera T, Herrero P, Moreno F. Biochem J; 2001 May 01; 355(Pt 3):625-31. PubMed ID: 11311123 [Abstract] [Full Text] [Related]
5. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae]. Cai Y, Qi X, Qi Q, Lin Y, Wang Z, Wang Q. Sheng Wu Gong Cheng Xue Bao; 2018 Jan 25; 34(1):54-67. PubMed ID: 29380571 [Abstract] [Full Text] [Related]
6. Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast. Randez-Gil F, Sanz P, Entian KD, Prieto JA. Mol Cell Biol; 1998 May 25; 18(5):2940-8. PubMed ID: 9566913 [Abstract] [Full Text] [Related]
8. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Salusjärvi L, Kankainen M, Soliymani R, Pitkänen JP, Penttilä M, Ruohonen L. Microb Cell Fact; 2008 Jun 04; 7():18. PubMed ID: 18533012 [Abstract] [Full Text] [Related]
9. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S, Petschacher B, Wallner M, Longus K, Klimacek M, Nidetzky B. Microb Cell Fact; 2010 Mar 10; 9():16. PubMed ID: 20219100 [Abstract] [Full Text] [Related]
10. Mediator factor Med8p interacts with the hexokinase 2: implication in the glucose signalling pathway of Saccharomyces cerevisiae. de la Cera T, Herrero P, Moreno-Herrero F, Chaves RS, Moreno F. J Mol Biol; 2002 Jun 07; 319(3):703-14. PubMed ID: 12054864 [Abstract] [Full Text] [Related]
11. Association of improved oxidative stress tolerance and alleviation of glucose repression with superior xylose-utilization capability by a natural isolate of Saccharomyces cerevisiae. Cheng C, Tang RQ, Xiong L, Hector RE, Bai FW, Zhao XQ. Biotechnol Biofuels; 2018 Jun 07; 11():28. PubMed ID: 29441126 [Abstract] [Full Text] [Related]
15. [Effect of controlled overexpression of xylulokinase by different promoters on xylose metabolism in Saccharomyces cerevisiae]. Peng B, Chen X, Shen Y, Bao X. Wei Sheng Wu Xue Bao; 2011 Jul 07; 51(7):914-22. PubMed ID: 22043792 [Abstract] [Full Text] [Related]
16. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Hector RE, Qureshi N, Hughes SR, Cotta MA. Appl Microbiol Biotechnol; 2008 Sep 07; 80(4):675-84. PubMed ID: 18629494 [Abstract] [Full Text] [Related]