These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 32518590
1. A techno-practical method for overcoming the biotoxicity and volatility obstacles of butanol and butyric acid during whole-cell catalysis by Gluconobacter oxydans. Hua X, Du G, Zhou X, Nawaz A, Ul Haq I, Xu Y. Biotechnol Biofuels; 2020; 13():102. PubMed ID: 32518590 [Abstract] [Full Text] [Related]
2. Resolving the formidable barrier of oxygen transferring rate (OTR) in ultrahigh-titer bioconversion/biocatalysis by a sealed-oxygen supply biotechnology (SOS). Hua X, Zhou X, Du G, Xu Y. Biotechnol Biofuels; 2020; 13():1. PubMed ID: 31911817 [Abstract] [Full Text] [Related]
3. Continuous co-production of biomass and bio-oxidized metabolite (sorbose) using Gluconobacter oxydans in a high-oxygen tension bioreactor. Zhou X, Hua X, Zhou X, Xu Y, Zhang W. Bioresour Technol; 2019 Apr; 277():221-224. PubMed ID: 30658939 [Abstract] [Full Text] [Related]
4. pH regulatory divergent point for the selective bio-oxidation of primary diols during resting cell catalysis. Hua X, Zhang C, Han J, Xu Y. Biotechnol Biofuels Bioprod; 2022 Jun 30; 15(1):73. PubMed ID: 35773746 [Abstract] [Full Text] [Related]
5. A cost-practical cell-recycling process for xylonic acid bioproduction from acidic lignocellulosic hydrolysate with whole-cell catalysis of Gluconobacter oxydans. Han J, Hua X, Zhou X, Xu B, Wang H, Huang G, Xu Y. Bioresour Technol; 2021 Aug 30; 333():125157. PubMed ID: 33878501 [Abstract] [Full Text] [Related]
7. Electrodialytic bioproduction of xylonic acid in a bioreactor of supplied-oxygen intensification by using immobilized whole-cell Gluconobacter oxydans as biocatalyst. Zhou X, Han J, Xu Y. Bioresour Technol; 2019 Jun 30; 282():378-383. PubMed ID: 30884457 [Abstract] [Full Text] [Related]
10. A facile process for adipic acid production in high yield by oxidation of 1,6-hexanediol using the resting cells of Gluconobacter oxydans. Pyo SH, Sayed M, Örn OE, Amorrortu Gallo J, Fernandez Ros N, Hatti-Kaul R. Microb Cell Fact; 2022 Oct 28; 21(1):223. PubMed ID: 36307807 [Abstract] [Full Text] [Related]
14. Improvement of fermentation performance of Gluconobacter oxydans by combination of enhanced oxygen mass transfer in compressed-oxygen-supplied sealed system and cell-recycle technique. Zhou X, Zhou X, Xu Y. Bioresour Technol; 2017 Nov 28; 244(Pt 1):1137-1141. PubMed ID: 28863996 [Abstract] [Full Text] [Related]
15. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans. Li K, Mao X, Liu L, Lin J, Sun M, Wei D, Yang S. Microb Cell Fact; 2016 Jul 09; 15(1):121. PubMed ID: 27392695 [Abstract] [Full Text] [Related]
16. High-yield production of 5-keto-D-gluconic acid via regulated fermentation strategy of Gluconobacter oxydans and its conversion to L-(+)-tartaric acid. Sheng Z, Li Y, Wang J. Heliyon; 2024 Sep 15; 10(17):e36527. PubMed ID: 39281443 [Abstract] [Full Text] [Related]
17. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S. J Biosci Bioeng; 2004 Sep 15; 98(4):263-8. PubMed ID: 16233703 [Abstract] [Full Text] [Related]
18. New perspectives into Gluconobacter-catalysed biotransformations. Ripoll M, Lerma-Escalera JA, Morones-Ramírez JR, Rios-Solis L, Betancor L. Biotechnol Adv; 2023 Sep 15; 65():108127. PubMed ID: 36924811 [Abstract] [Full Text] [Related]