These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
629 related items for PubMed ID: 32526297
21. Biocomposites electrospun with poly(ε-caprolactone) and silk fibroin powder for biomedical applications. Lee H, Kim G. J Biomater Sci Polym Ed; 2010; 21(13):1687-99. PubMed ID: 20537249 [Abstract] [Full Text] [Related]
22. Zn-substituted Mg2SiO4 nanoparticles-incorporated PCL-silk fibroin composite scaffold: A multifunctional platform towards bone tissue regeneration. Bigham A, Salehi AOM, Rafienia M, Salamat MR, Rahmati S, Raucci MG, Ambrosio L. Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112242. PubMed ID: 34225882 [Abstract] [Full Text] [Related]
23. Electrospun homogeneous silk fibroin/poly (ɛ-caprolactone) nanofibrous scaffolds by addition of acetic acid for tissue engineering. Zhu J, Luo J, Zhao X, Gao J, Xiong J. J Biomater Appl; 2016 Sep; 31(3):421-37. PubMed ID: 27422715 [Abstract] [Full Text] [Related]
24. Three-layered scaffolds for artificial esophagus using poly(ɛ-caprolactone) nanofibers and silk fibroin: An experimental study in a rat model. Chung EJ, Ju HW, Park HJ, Park CH. J Biomed Mater Res A; 2015 Jun; 103(6):2057-65. PubMed ID: 25294581 [Abstract] [Full Text] [Related]
25. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S. Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706 [Abstract] [Full Text] [Related]
26. A novel knitted scaffold made of microfiber/nanofiber core-sheath yarns for tendon tissue engineering. Cai J, Xie X, Li D, Wang L, Jiang J, Mo X, Zhao J. Biomater Sci; 2020 Aug 11; 8(16):4413-4425. PubMed ID: 32648862 [Abstract] [Full Text] [Related]
27. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration. Li Z, Wu N, Cheng J, Sun M, Yang P, Zhao F, Zhang J, Duan X, Fu X, Zhang J, Hu X, Chen H, Ao Y. Theranostics; 2020 Aug 11; 10(11):5090-5106. PubMed ID: 32308770 [Abstract] [Full Text] [Related]
28. Estradiol-Loaded Poly(ε-caprolactone)/Silk Fibroin Electrospun Microfibers Decrease Osteoclast Activity and Retain Osteoblast Function. Steffi C, Wang D, Kong CH, Wang Z, Lim PN, Shi Z, San Thian E, Wang W. ACS Appl Mater Interfaces; 2018 Mar 28; 10(12):9988-9998. PubMed ID: 29513524 [Abstract] [Full Text] [Related]
29. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering. Bhattacharjee P, Kundu B, Naskar D, Kim HW, Bhattacharya D, Maiti TK, Kundu SC. Cell Tissue Res; 2016 Feb 28; 363(2):525-40. PubMed ID: 26174955 [Abstract] [Full Text] [Related]
30. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering. Shao W, He J, Sang F, Ding B, Chen L, Cui S, Li K, Han Q, Tan W. Mater Sci Eng C Mater Biol Appl; 2016 Jan 01; 58():342-51. PubMed ID: 26478319 [Abstract] [Full Text] [Related]
32. Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration. Gandhimathi C, Venugopal JR, Bhaarathy V, Ramakrishna S, Kumar SD. Int J Nanomedicine; 2014 Jun 15; 9():4709-22. PubMed ID: 25336949 [Abstract] [Full Text] [Related]
33. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation. Cengiz IF, Pereira H, Espregueira-Mendes J, Kwon IK, Reis RL, Oliveira JM. J Mater Sci Mater Med; 2019 May 24; 30(6):63. PubMed ID: 31127379 [Abstract] [Full Text] [Related]
34. In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft. Rose JB, Sidney LE, Patient J, White LJ, Dua HS, El Haj AJ, Hopkinson A, Rose FRAJ. J Biomed Mater Res A; 2019 Apr 24; 107(4):828-838. PubMed ID: 30578722 [Abstract] [Full Text] [Related]
35. Tissue-engineered nerve graft using silk-fibroin/polycaprolactone fibrous mats decorated with bioactive cerium oxide nanoparticles. Saremi J, Khanmohammadi M, Azami M, Ai J, Yousefi-Ahmadipour A, Ebrahimi-Barough S. J Biomed Mater Res A; 2021 Sep 24; 109(9):1588-1599. PubMed ID: 33634587 [Abstract] [Full Text] [Related]
36. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Wang L, Wu Y, Hu T, Ma PX, Guo B. Acta Biomater; 2019 Sep 15; 96():175-187. PubMed ID: 31260823 [Abstract] [Full Text] [Related]
37. Mechanical and in vitro study of 3D printed silk fibroin and bone-based composites biomaterials for bone implant application. Ansari AI, Ahmad Sheikh N, Kumar N. Proc Inst Mech Eng H; 2024 Jul 15; 238(7):774-792. PubMed ID: 39045911 [Abstract] [Full Text] [Related]
38. Coaxial electrospinning of composite mats comprised of core/shell poly(methyl methacrylate)/silk fibroin fibers for tissue engineering applications. Atila D, Hasirci V, Tezcaner A. J Mech Behav Biomed Mater; 2022 Apr 15; 128():105105. PubMed ID: 35121425 [Abstract] [Full Text] [Related]
39. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering. Naghashzargar E, Farè S, Catto V, Bertoldi S, Semnani D, Karbasi S, Tanzi MC. J Appl Biomater Funct Mater; 2015 Jul 04; 13(2):e156-68. PubMed ID: 25589157 [Abstract] [Full Text] [Related]
40. Biofabrication of poly(l-lactide-co-ε-caprolactone)/silk fibroin scaffold for the application as superb anti-calcification tissue engineered prosthetic valve. Wang X, Liu J, Jing H, Li B, Sun Z, Li B, Kong D, Leng X, Wang Z. Mater Sci Eng C Mater Biol Appl; 2021 Feb 04; 121():111872. PubMed ID: 33579497 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]