These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


137 related items for PubMed ID: 32540466

  • 1. Drawing the line: Linear or non-linear reaction norms in response to adult acclimation on lower thermal limits.
    Sørensen JG, Winther ML, Salachan PV, MacLean HJ.
    J Insect Physiol; 2020 Jul; 124():104075. PubMed ID: 32540466
    [Abstract] [Full Text] [Related]

  • 2. Testing the thermal limits: Non-linear reaction norms drive disparate thermal acclimation responses in Drosophila melanogaster.
    Salachan PV, Burgaud H, Sørensen JG.
    J Insect Physiol; 2019 Oct; 118():103946. PubMed ID: 31525352
    [Abstract] [Full Text] [Related]

  • 3. Critical thermal limits affected differently by developmental and adult thermal fluctuations.
    Salachan PV, Sørensen JG.
    J Exp Biol; 2017 Dec 01; 220(Pt 23):4471-4478. PubMed ID: 28982965
    [Abstract] [Full Text] [Related]

  • 4. Ecologically relevant measures of tolerance to potentially lethal temperatures.
    Terblanche JS, Hoffmann AA, Mitchell KA, Rako L, le Roux PC, Chown SL.
    J Exp Biol; 2011 Nov 15; 214(Pt 22):3713-25. PubMed ID: 22031735
    [Abstract] [Full Text] [Related]

  • 5. How much starvation, desiccation and oxygen depletion can Drosophila melanogaster tolerate before its upper thermal limits are affected?
    Manenti T, Cunha TR, Sørensen JG, Loeschcke V.
    J Insect Physiol; 2018 Nov 15; 111():1-7. PubMed ID: 30273554
    [Abstract] [Full Text] [Related]

  • 6. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature.
    Sørensen JG, Schou MF, Kristensen TN, Loeschcke V.
    Sci Rep; 2016 Aug 04; 6():30975. PubMed ID: 27487917
    [Abstract] [Full Text] [Related]

  • 7. Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance.
    Slotsbo S, Schou MF, Kristensen TN, Loeschcke V, Sørensen JG.
    J Exp Biol; 2016 Sep 01; 219(Pt 17):2726-32. PubMed ID: 27353229
    [Abstract] [Full Text] [Related]

  • 8. How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster.
    Kellermann V, van Heerwaarden B, Sgrò CM.
    Proc Biol Sci; 2017 May 31; 284(1855):. PubMed ID: 28539515
    [Abstract] [Full Text] [Related]

  • 9. Thermal tolerance patterns across latitude and elevation.
    Sunday J, Bennett JM, Calosi P, Clusella-Trullas S, Gravel S, Hargreaves AL, Leiva FP, Verberk WCEP, Olalla-Tárraga MÁ, Morales-Castilla I.
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug 05; 374(1778):20190036. PubMed ID: 31203755
    [Abstract] [Full Text] [Related]

  • 10. Metabolic and functional characterization of effects of developmental temperature in Drosophila melanogaster.
    Schou MF, Kristensen TN, Pedersen A, Karlsson BG, Loeschcke V, Malmendal A.
    Am J Physiol Regul Integr Comp Physiol; 2017 Feb 01; 312(2):R211-R222. PubMed ID: 27927623
    [Abstract] [Full Text] [Related]

  • 11. Evolutionary capacity of upper thermal limits: beyond single trait assessments.
    Blackburn S, van Heerwaarden B, Kellermann V, Sgrò CM.
    J Exp Biol; 2014 Jun 01; 217(Pt 11):1918-24. PubMed ID: 24625644
    [Abstract] [Full Text] [Related]

  • 12. Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation.
    Kristensen TN, Kjeldal H, Schou MF, Nielsen JL.
    J Exp Biol; 2016 Apr 01; 219(Pt 7):969-76. PubMed ID: 26823104
    [Abstract] [Full Text] [Related]

  • 13. Speed of exposure to rapid cold hardening and genotype drive the level of acclimation response in Drosophila melanogaster.
    Gerken AR, Eller-Smith OC, Morgan TJ.
    J Therm Biol; 2018 Aug 01; 76():21-28. PubMed ID: 30143293
    [Abstract] [Full Text] [Related]

  • 14. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR, Eller OC, Hahn DA, Morgan TJ.
    Proc Natl Acad Sci U S A; 2015 Apr 07; 112(14):4399-404. PubMed ID: 25805817
    [Abstract] [Full Text] [Related]

  • 15. Testing metabolic cold adaptation and the climatic variability hypothesis in two latitudinally distant populations of a supratidal water beetle.
    Mirón-Gatón JM, Velasco J, Pallarés S, García-Meseguer AJ, Millán A, Bilton DT.
    J Therm Biol; 2024 Jul 07; 123():103934. PubMed ID: 39111060
    [Abstract] [Full Text] [Related]

  • 16. Impacts of thermal fluctuations on heat tolerance and its metabolomic basis in Arabidopsis thaliana, Drosophila melanogaster, and Orchesella cincta.
    Noer NK, Pagter M, Bahrndorff S, Malmendal A, Kristensen TN.
    PLoS One; 2020 Jul 07; 15(10):e0237201. PubMed ID: 33119606
    [Abstract] [Full Text] [Related]

  • 17. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.
    Allen JL, Chown SL, Janion-Scheepers C, Clusella-Trullas S.
    Conserv Physiol; 2016 Jul 07; 4(1):cow053. PubMed ID: 27933165
    [Abstract] [Full Text] [Related]

  • 18. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.
    Schou MF, Loeschcke V, Kristensen TN.
    PLoS One; 2015 Jul 07; 10(6):e0130307. PubMed ID: 26075607
    [Abstract] [Full Text] [Related]

  • 19. Interactions between developmental and adult acclimation have distinct consequences for heat tolerance and heat stress recovery.
    Willot Q, Loos B, Terblanche JS.
    J Exp Biol; 2021 Aug 15; 224(16):. PubMed ID: 34308995
    [Abstract] [Full Text] [Related]

  • 20. Costs and benefits of cold acclimation in field-released Drosophila.
    Kristensen TN, Hoffmann AA, Overgaard J, Sørensen JG, Hallas R, Loeschcke V.
    Proc Natl Acad Sci U S A; 2008 Jan 08; 105(1):216-21. PubMed ID: 18162547
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.