These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


289 related items for PubMed ID: 32543494

  • 1. Broadband dynamically tunable terahertz absorber based on a Dirac semimetal.
    Xiong H, Shen Q, Ji Q.
    Appl Opt; 2020 Jun 01; 59(16):4970-4976. PubMed ID: 32543494
    [Abstract] [Full Text] [Related]

  • 2. A thermally and electrically dual-tunable absorber based on Dirac semimetal and strontium titanate.
    Xiong H, Shen Q.
    Nanoscale; 2020 Jul 16; 12(27):14598-14604. PubMed ID: 32614017
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Broadband terahertz absorber with tunable frequency and bandwidth by using Dirac semimetal and strontium titanate.
    Wu T, Shao Y, Ma S, Wang G, Gao Y.
    Opt Express; 2021 Mar 01; 29(5):7713-7723. PubMed ID: 33726267
    [Abstract] [Full Text] [Related]

  • 6. Broad/narrowband switchable terahertz absorber based on Dirac semimetal and strontium titanate for temperature sensing.
    Zhang YG, Liu W, Yao HY, Liang LJ, Yan X, Zong MJ, Gao S, Huang CC, Qiu F, Feng ZW, Zhang R, Hu XF, Li ZH, Wang ZQ.
    Appl Opt; 2024 Feb 10; 63(5):1306-1312. PubMed ID: 38437310
    [Abstract] [Full Text] [Related]

  • 7. Dual-controlled broadband terahertz absorber based on graphene and Dirac semimetal.
    Xiong H, Ji Q, Bashir T, Yang F.
    Opt Express; 2020 Apr 27; 28(9):13884-13894. PubMed ID: 32403854
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Dirac semimetals based tunable narrowband absorber at terahertz frequencies.
    Liu GD, Zhai X, Meng HY, Lin Q, Huang Y, Zhao CJ, Wang LL.
    Opt Express; 2018 Apr 30; 26(9):11471-11480. PubMed ID: 29716065
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Multifunctional terahertz absorber based on the Dirac semimetal and vanadium dioxide.
    Zhang YG, Zhang R, Liang LJ, Yao HY, Yan X, Huang CC, Ying KH.
    Appl Opt; 2023 Jan 20; 62(3):813-819. PubMed ID: 36821288
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z, Wu D, Liu Y, Liu C, Yu Z, Yu L, Ye H.
    Nanoscale Res Lett; 2018 May 09; 13(1):143. PubMed ID: 29744682
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene.
    Chen F, Cheng Y, Luo H.
    Materials (Basel); 2020 Feb 14; 13(4):. PubMed ID: 32075066
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.