These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 32544238

  • 1. Unique Genomic and Phenotypic Responses to Extreme and Variable pH Conditions in Purple Urchin Larvae.
    Garrett AD, Brennan RS, Steinhart AL, Pelletier AM, Pespeni MH.
    Integr Comp Biol; 2020 Aug 01; 60(2):318-331. PubMed ID: 32544238
    [Abstract] [Full Text] [Related]

  • 2. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus.
    Kelly MW, Padilla-Gamiño JL, Hofmann GE.
    Glob Chang Biol; 2013 Aug 01; 19(8):2536-46. PubMed ID: 23661315
    [Abstract] [Full Text] [Related]

  • 3. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions.
    Brennan RS, Garrett AD, Huber KE, Hargarten H, Pespeni MH.
    Proc Biol Sci; 2019 Jun 12; 286(1904):20190943. PubMed ID: 31185858
    [Abstract] [Full Text] [Related]

  • 4. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.
    Evans TG, Padilla-Gamiño JL, Kelly MW, Pespeni MH, Chan F, Menge BA, Gaylord B, Hill TM, Russell AD, Palumbi SR, Sanford E, Hofmann GE.
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul 12; 185():33-42. PubMed ID: 25773301
    [Abstract] [Full Text] [Related]

  • 5. Signs of adaptation to local pH conditions across an environmental mosaic in the California Current Ecosystem.
    Pespeni MH, Chan F, Menge BA, Palumbi SR.
    Integr Comp Biol; 2013 Nov 12; 53(5):857-70. PubMed ID: 23980118
    [Abstract] [Full Text] [Related]

  • 6. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification.
    Todgham AE, Hofmann GE.
    J Exp Biol; 2009 Aug 12; 212(Pt 16):2579-94. PubMed ID: 19648403
    [Abstract] [Full Text] [Related]

  • 7. Evolutionary change during experimental ocean acidification.
    Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosfelt JD, Jaris HK, LaVigne M, Lenz EA, Russell AD, Young MK, Palumbi SR.
    Proc Natl Acad Sci U S A; 2013 Apr 23; 110(17):6937-42. PubMed ID: 23569232
    [Abstract] [Full Text] [Related]

  • 8. Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic.
    Evans TG, Pespeni MH, Hofmann GE, Palumbi SR, Sanford E.
    Mol Ecol; 2017 Apr 23; 26(8):2257-2275. PubMed ID: 28141889
    [Abstract] [Full Text] [Related]

  • 9. Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO2 -induced seawater acidification.
    Lee HG, Stumpp M, Yan JJ, Tseng YC, Heinzel S, Hu MY.
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug 23; 234():87-97. PubMed ID: 31022521
    [Abstract] [Full Text] [Related]

  • 10. Experimental ocean acidification alters the allocation of metabolic energy.
    Pan TC, Applebaum SL, Manahan DT.
    Proc Natl Acad Sci U S A; 2015 Apr 14; 112(15):4696-701. PubMed ID: 25825763
    [Abstract] [Full Text] [Related]

  • 11. Genetic variation underlies plastic responses to global change drivers in the purple sea urchin, Strongylocentrotus purpuratus.
    Strader ME, Wolak ME, Simon OM, Hofmann GE.
    Proc Biol Sci; 2022 Aug 31; 289(1981):20221249. PubMed ID: 36043281
    [Abstract] [Full Text] [Related]

  • 12. Temperature and CO(2) additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus.
    Padilla-Gamiño JL, Kelly MW, Evans TG, Hofmann GE.
    Proc Biol Sci; 2013 May 22; 280(1759):20130155. PubMed ID: 23536595
    [Abstract] [Full Text] [Related]

  • 13. Spatio-temporal environmental variation mediates geographical differences in phenotypic responses to ocean acidification.
    Gaitán-Espitia JD, Villanueva PA, Lopez J, Torres R, Navarro JM, Bacigalupe LD.
    Biol Lett; 2017 Feb 22; 13(2):. PubMed ID: 28179409
    [Abstract] [Full Text] [Related]

  • 14. Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH.
    Dorey N, Lançon P, Thorndyke M, Dupont S.
    Glob Chang Biol; 2013 Nov 22; 19(11):3355-67. PubMed ID: 23744556
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Influence of environmentally relevant concentrations of Zn, Cd and Ni and their binary mixtures on metal uptake, bioaccumulation and development in larvae of the purple sea urchin Strongylocentrotus purpuratus.
    Nogueira LS, Domingos-Moreira FXV, Klein RD, Bianchini A, Wood CM.
    Aquat Toxicol; 2021 Jan 22; 230():105709. PubMed ID: 33296850
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.