These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 32555021

  • 1. Modeling the Recovery of W' in the Moderate to Heavy Exercise Intensity Domain.
    Sreedhara VSM, Ashtiani F, Mocko GM, Vahidi A, Hutchison RE.
    Med Sci Sports Exerc; 2020 Dec; 52(12):2646-2654. PubMed ID: 32555021
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. W' Recovery Kinetics after Exhaustion: A Two-Phase Exponential Process Influenced by Aerobic Fitness.
    Caen K, Bourgois G, Dauwe C, Blancquaert L, Vermeire K, Lievens E, VAN Dorpe JO, Derave W, Bourgois JG, Pringels L, Boone J.
    Med Sci Sports Exerc; 2021 Sep 01; 53(9):1911-1921. PubMed ID: 33787532
    [Abstract] [Full Text] [Related]

  • 4. Effect of work and recovery durations on W' reconstitution during intermittent exercise.
    Skiba PF, Jackman S, Clarke D, Vanhatalo A, Jones AM.
    Med Sci Sports Exerc; 2014 Jul 01; 46(7):1433-40. PubMed ID: 24492634
    [Abstract] [Full Text] [Related]

  • 5. The constant work rate critical power protocol overestimates ramp incremental exercise performance.
    Black MI, Jones AM, Kelly JA, Bailey SJ, Vanhatalo A.
    Eur J Appl Physiol; 2016 Dec 01; 116(11-12):2415-2422. PubMed ID: 27787608
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling.
    Karsten B, Hopker J, Jobson SA, Baker J, Petrigna L, Klose A, Beedie C.
    J Sports Sci; 2017 Jul 01; 35(14):1420-1425. PubMed ID: 27531664
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Effects of priming exercise on VO2 kinetics and the power-duration relationship.
    Burnley M, Davison G, Baker JR.
    Med Sci Sports Exerc; 2011 Nov 01; 43(11):2171-9. PubMed ID: 21552161
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Influence of initial metabolic rate on the power-duration relationship for all-out exercise.
    Parker Simpson L, Jones AM, Vanhatalo A, Wilkerson DP.
    Eur J Appl Physiol; 2012 Jul 01; 112(7):2467-73. PubMed ID: 22052102
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Modeling the expenditure and reconstitution of work capacity above critical power.
    Skiba PF, Chidnok W, Vanhatalo A, Jones AM.
    Med Sci Sports Exerc; 2012 Aug 01; 44(8):1526-32. PubMed ID: 22382171
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.
    Karsten B, Baker J, Naclerio F, Klose A, Bianco A, Nimmerichter A.
    Int J Sports Physiol Perform; 2018 Feb 01; 13(2):183-188. PubMed ID: 28530476
    [Abstract] [Full Text] [Related]

  • 18. Exercise Tolerance Can Be Enhanced through a Change in Work Rate within the Severe Intensity Domain: Work above Critical Power Is Not Constant.
    Dekerle J, de Souza KM, de Lucas RD, Guglielmo LG, Greco CC, Denadai BS.
    PLoS One; 2015 Feb 01; 10(9):e0138428. PubMed ID: 26407169
    [Abstract] [Full Text] [Related]

  • 19. Self-pacing increases critical power and improves performance during severe-intensity exercise.
    Black MI, Jones AM, Bailey SJ, Vanhatalo A.
    Appl Physiol Nutr Metab; 2015 Jul 01; 40(7):662-70. PubMed ID: 26088158
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.