These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. CancerGram: An Effective Classifier for Differentiating Anticancer from Antimicrobial Peptides. Burdukiewicz M, Sidorczuk K, Rafacz D, Pietluch F, Bąkała M, Słowik J, Gagat P. Pharmaceutics; 2020 Oct 31; 12(11):. PubMed ID: 33142753 [Abstract] [Full Text] [Related]
3. dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Jhong JH, Chi YH, Li WC, Lin TH, Huang KY, Lee TY. Nucleic Acids Res; 2019 Jan 08; 47(D1):D285-D297. PubMed ID: 30380085 [Abstract] [Full Text] [Related]
4. Computational resources and tools for antimicrobial peptides. Liu S, Fan L, Sun J, Lao X, Zheng H. J Pept Sci; 2017 Jan 08; 23(1):4-12. PubMed ID: 27966278 [Abstract] [Full Text] [Related]
5. Testing Antimicrobial Properties of Selected Short Amyloids. Gagat P, Duda-Madej A, Ostrówka M, Pietluch F, Seniuk A, Mackiewicz P, Burdukiewicz M. Int J Mol Sci; 2023 Jan 02; 24(1):. PubMed ID: 36614244 [Abstract] [Full Text] [Related]
6. Leveraging family-specific signatures for AMP discovery and high-throughput annotation. Waghu FH, Barai RS, Idicula-Thomas S. Sci Rep; 2016 Apr 19; 6():24684. PubMed ID: 27089856 [Abstract] [Full Text] [Related]
7. CAMPR4: a database of natural and synthetic antimicrobial peptides. Gawde U, Chakraborty S, Waghu FH, Barai RS, Khanderkar A, Indraguru R, Shirsat T, Idicula-Thomas S. Nucleic Acids Res; 2023 Jan 06; 51(D1):D377-D383. PubMed ID: 36370097 [Abstract] [Full Text] [Related]
8. Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs. Lertampaiporn S, Vorapreeda T, Hongsthong A, Thammarongtham C. Genes (Basel); 2021 Jan 21; 12(2):. PubMed ID: 33494403 [Abstract] [Full Text] [Related]
13. Tools in the Era of Multidrug Resistance in Bacteria: Applications for New Antimicrobial Peptides Discovery. Moretta A, Scieuzo C, Salvia R, Popović ŽD, Sgambato A, Falabella P. Curr Pharm Des; 2022 Jan 21; 28(35):2856-2866. PubMed ID: 35980058 [Abstract] [Full Text] [Related]
16. Discovery and identification of antimicrobial peptides in Sichuan pepper (Zanthoxylum bungeanum Maxim) seeds by peptidomics and bioinformatics. Hou X, Li S, Luo Q, Shen G, Wu H, Li M, Liu X, Chen A, Ye M, Zhang Z. Appl Microbiol Biotechnol; 2019 Mar 21; 103(5):2217-2228. PubMed ID: 30623204 [Abstract] [Full Text] [Related]
17. A linguistic model for the rational design of antimicrobial peptides. Loose C, Jensen K, Rigoutsos I, Stephanopoulos G. Nature; 2006 Oct 19; 443(7113):867-9. PubMed ID: 17051220 [Abstract] [Full Text] [Related]
19. In silico design of polycationic antimicrobial peptides active against Pseudomonas aeruginosa and Staphylococcus aureus. Hincapié O, Giraldo P, Orduz S. Antonie Van Leeuwenhoek; 2018 Oct 19; 111(10):1871-1882. PubMed ID: 29626331 [Abstract] [Full Text] [Related]
20. Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms. Chung CR, Jhong JH, Wang Z, Chen S, Wan Y, Horng JT, Lee TY. Int J Mol Sci; 2020 Feb 02; 21(3):. PubMed ID: 32024233 [Abstract] [Full Text] [Related] Page: [Next] [New Search]