These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
218 related items for PubMed ID: 32567560
1. In vitro and in vivo evaluation of antibacterial activity of polyhexamethylene guanidine (PHMG)-loaded TiO2 nanotubes. Wu F, Xu J, Yan R, Hu B, Li G, Jin M, Jiang X, Li J, Tang P, Zhu J, Yan S. Biomed Mater; 2020 Jun 22; 15(4):045016. PubMed ID: 32567560 [Abstract] [Full Text] [Related]
2. BMP2-loaded titania nanotubes coating with pH-responsive multilayers for bacterial infections inhibition and osteogenic activity improvement. Tao B, Deng Y, Song L, Ma W, Qian Y, Lin C, Yuan Z, Lu L, Chen M, Yang X, Cai K. Colloids Surf B Biointerfaces; 2019 May 01; 177():242-252. PubMed ID: 30763789 [Abstract] [Full Text] [Related]
3. Fabrication of hyaluronidase-responsive biocompatible multilayers on BMP2 loaded titanium nanotube for the bacterial infection prevention. Sutrisno L, Hu Y, Shen X, Li M, Luo Z, Dai L, Wang S, Zhong JL, Cai K. Mater Sci Eng C Mater Biol Appl; 2018 Aug 01; 89():95-105. PubMed ID: 29752124 [Abstract] [Full Text] [Related]
4. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Kumeria T, Mon H, Aw MS, Gulati K, Santos A, Griesser HJ, Losic D. Colloids Surf B Biointerfaces; 2015 Jun 01; 130():255-63. PubMed ID: 25944564 [Abstract] [Full Text] [Related]
5. Layer-by-layer immobilizing of polydopamine-assisted ε-polylysine and gum Arabic on titanium: Tailoring of antibacterial and osteogenic properties. Zhang Y, Wang F, Huang Q, Patil AB, Hu J, Fan L, Yang Y, Duan H, Dong X, Lin C. Mater Sci Eng C Mater Biol Appl; 2020 May 01; 110():110690. PubMed ID: 32204005 [Abstract] [Full Text] [Related]
6. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters. Lin WT, Tan HL, Duan ZL, Yue B, Ma R, He G, Tang TT. Int J Nanomedicine; 2014 May 01; 9():1215-30. PubMed ID: 24634583 [Abstract] [Full Text] [Related]
7. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Gulati K, Ramakrishnan S, Aw MS, Atkins GJ, Findlay DM, Losic D. Acta Biomater; 2012 Jan 01; 8(1):449-56. PubMed ID: 21930254 [Abstract] [Full Text] [Related]
8. Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO₂ nanoparticle-decorated TiO₂ nanotubes. Liu W, Su P, Chen S, Wang N, Wang J, Liu Y, Ma Y, Li H, Zhang Z, Webster TJ. Nanomedicine (Lond); 2015 Jan 01; 10(5):713-23. PubMed ID: 25816875 [Abstract] [Full Text] [Related]
9. Poly(dopamine) and Ag nanoparticle-loaded TiO2 nanotubes with optimized antibacterial and ROS-scavenging bioactivities. Gao C, Cheng H, Xu N, Li Y, Chen Y, Wei Y, Gao B, Fu J, Huo K, Xiong W. Nanomedicine (Lond); 2019 Apr 01; 14(7):803-818. PubMed ID: 30638128 [Abstract] [Full Text] [Related]
10. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Gunputh UF, Le H, Lawton K, Besinis A, Tredwin C, Handy RD. Nanotoxicology; 2020 Feb 01; 14(1):97-110. PubMed ID: 31566471 [Abstract] [Full Text] [Related]
11. An in vitro study of a titanium surface modified by simvastatin-loaded titania nanotubes-micelles. Liu X, Li X, Li S, Zhou X, Li S, Wang Q, Dai J, Lai R, Xie L, Zhong M, Zhang Y, Zhou L. J Biomed Nanotechnol; 2014 Feb 01; 10(2):194-204. PubMed ID: 24738328 [Abstract] [Full Text] [Related]
13. Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Cheng H, Xiong W, Fang Z, Guan H, Wu W, Li Y, Zhang Y, Alvarez MM, Gao B, Huo K, Xu J, Xu N, Zhang C, Fu J, Khademhosseini A, Li F. Acta Biomater; 2016 Feb 01; 31():388-400. PubMed ID: 26612413 [Abstract] [Full Text] [Related]
15. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants. Sul YT. Int J Nanomedicine; 2010 Apr 15; 5():87-100. PubMed ID: 20463928 [Abstract] [Full Text] [Related]
16. The sustained release of dexamethasone from TiO2 nanotubes reinforced by chitosan to enhance osteoblast function and anti-inflammation activity. Shen K, Tang Q, Fang X, Zhang C, Zhu Z, Hou Y, Lai M. Mater Sci Eng C Mater Biol Appl; 2020 Nov 15; 116():111241. PubMed ID: 32806259 [Abstract] [Full Text] [Related]
18. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response. Yuan Z, Liu P, Hao Y, Ding Y, Cai K. Colloids Surf B Biointerfaces; 2018 Nov 01; 171():597-605. PubMed ID: 30099296 [Abstract] [Full Text] [Related]
19. Effects of hydrogenated TiO2 nanotube arrays on protein adsorption and compatibility with osteoblast-like cells. Lu R, Wang C, Wang X, Wang Y, Wang N, Chou J, Li T, Zhang Z, Ling Y, Chen S. Int J Nanomedicine; 2018 Nov 01; 13():2037-2049. PubMed ID: 29670348 [Abstract] [Full Text] [Related]
20. Fabrication and antibacterial properties of cefuroxime-loaded TiO2 nanotubes. Niu X, Sun L, Zhang X, Sun Y, Wang J. Appl Microbiol Biotechnol; 2020 Apr 01; 104(7):2947-2955. PubMed ID: 32055911 [Abstract] [Full Text] [Related] Page: [Next] [New Search]