These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


738 related items for PubMed ID: 32575907

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Motion planning framework based on dual-agent DDPG method for dual-arm robots guided by human joint angle constraints.
    Liang K, Zha F, Guo W, Liu S, Wang P, Sun L.
    Front Neurorobot; 2024; 18():1362359. PubMed ID: 38455735
    [Abstract] [Full Text] [Related]

  • 3. Deep Reinforcement Learning Approach with Multiple Experience Pools for UAV's Autonomous Motion Planning in Complex Unknown Environments.
    Hu Z, Wan K, Gao X, Zhai Y, Wang Q.
    Sensors (Basel); 2020 Mar 29; 20(7):. PubMed ID: 32235308
    [Abstract] [Full Text] [Related]

  • 4. Intermittent Stop-Move Motion Planning for Dual-Arm Tomato Harvesting Robot in Greenhouse Based on Deep Reinforcement Learning.
    Li Y, Feng Q, Zhang Y, Peng C, Zhao C.
    Biomimetics (Basel); 2024 Feb 10; 9(2):. PubMed ID: 38392151
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Gait Optimization Method for Humanoid Robots Based on Parallel Comprehensive Learning Particle Swarm Optimizer Algorithm.
    Tao C, Xue J, Zhang Z, Cao F, Li C, Gao H.
    Front Neurorobot; 2020 Feb 10; 14():600885. PubMed ID: 33519412
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Neural-Dynamic-Method-Based Dual-Arm CMG Scheme With Time-Varying Constraints Applied to Humanoid Robots.
    Zhang Z, Li Z, Zhang Y, Luo Y, Li Y.
    IEEE Trans Neural Netw Learn Syst; 2015 Dec 10; 26(12):3251-62. PubMed ID: 26340789
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning.
    Gao J, Ye W, Guo J, Li Z.
    Sensors (Basel); 2020 Sep 25; 20(19):. PubMed ID: 32992750
    [Abstract] [Full Text] [Related]

  • 14. A Hierarchical Framework for Quadruped Robots Gait Planning Based on DDPG.
    Li Y, Chen Z, Wu C, Mao H, Sun P.
    Biomimetics (Basel); 2023 Aug 22; 8(5):. PubMed ID: 37754133
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Leveraging Expert Demonstration Features for Deep Reinforcement Learning in Floor Cleaning Robot Navigation.
    Cimurs R, Merchán-Cruz EA.
    Sensors (Basel); 2022 Oct 12; 22(20):. PubMed ID: 36298101
    [Abstract] [Full Text] [Related]

  • 17. Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in Sparse Reward Environments.
    Park M, Lee SY, Hong JS, Kwon NK.
    Sensors (Basel); 2022 Dec 07; 22(24):. PubMed ID: 36559941
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.