These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
160 related items for PubMed ID: 3257693
21. Actions of inositol phosphates on Ca2+ pools in guinea-pig hepatocytes. Burgess GM, Irvine RF, Berridge MJ, McKinney JS, Putney JW. Biochem J; 1984 Dec 15; 224(3):741-6. PubMed ID: 6525174 [Abstract] [Full Text] [Related]
22. MgATP-dependent glucose 6-phosphate-stimulated Ca2+ accumulation in liver microsomal fractions. Effects of inositol 1,4,5-trisphosphate and GTP. Benedetti A, Fulceri R, Romani A, Comporti M. J Biol Chem; 1988 Mar 05; 263(7):3466-73. PubMed ID: 3257759 [Abstract] [Full Text] [Related]
23. GTP- and inositol 1,4,5-trisphosphate-activated intracellular calcium movements in neuronal and smooth muscle cell lines. Chueh SH, Mullaney JM, Ghosh TK, Zachary AL, Gill DL. J Biol Chem; 1987 Oct 05; 262(28):13857-64. PubMed ID: 3498720 [Abstract] [Full Text] [Related]
24. Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. Hashimoto T, Hirata M, Itoh T, Kanmura Y, Kuriyama H. J Physiol; 1986 Jan 05; 370():605-18. PubMed ID: 3007748 [Abstract] [Full Text] [Related]
25. Inositol 1,4,5-trisphosphate binds to a specific receptor and releases microsomal calcium in the anterior pituitary gland. Guillemette G, Balla T, Baukal AJ, Catt KJ. Proc Natl Acad Sci U S A; 1987 Dec 05; 84(23):8195-9. PubMed ID: 2825180 [Abstract] [Full Text] [Related]
26. GTP-sensitivity of the energy-dependent Ca2+ storage pool in permeabilized pancreatic acinar cells. van de Put FH, De Pont JJ, Willems PH. Cell Calcium; 1991 Oct 05; 12(9):587-98. PubMed ID: 1959126 [Abstract] [Full Text] [Related]
27. The effect of GTP on inositol 1,4,5-trisphosphate-stimulated Ca2+ efflux from a rat liver microsomal fraction. Is a GTP-dependent protein phosphorylation involved? Dawson AP, Comerford JG, Fulton DV. Biochem J; 1986 Mar 01; 234(2):311-5. PubMed ID: 3487314 [Abstract] [Full Text] [Related]
28. Guanine nucleotide-induced Ca2+ release in permeabilized murine thymocytes. Ueda T, Ichikawa Y, Kusaka I. FEBS Lett; 1988 Jul 18; 234(2):272-4. PubMed ID: 3260562 [Abstract] [Full Text] [Related]
29. Inositol 1,4,5-trisphosphate and intracellular Ca2+ homeostasis in clonal pituitary cells (GH3). Translocation of Ca2+ into mitochondria from a functionally discrete portion of the nonmitochondrial store. Biden TJ, Wollheim CB, Schlegel W. J Biol Chem; 1986 Jun 05; 261(16):7223-9. PubMed ID: 3486868 [Abstract] [Full Text] [Related]
30. A role for inositol 1,4,5-trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle. Hashimoto T, Hirata M, Ito Y. Br J Pharmacol; 1985 Sep 05; 86(1):191-9. PubMed ID: 3876861 [Abstract] [Full Text] [Related]
31. Calcium release from porcine thyroid microsomes by phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate. Nakamura Y, Ohtaki S. Endocrinology; 1987 Jun 05; 120(6):2302-7. PubMed ID: 3032583 [Abstract] [Full Text] [Related]
32. GTP requirement for inositol-1,4,5-trisphosphate-induced Ca2+ release from sarcoplasmic reticulum in smooth muscle. Saida K, van Breemen C. Biochem Biophys Res Commun; 1987 May 14; 144(3):1313-6. PubMed ID: 3495274 [Abstract] [Full Text] [Related]
33. Roles of Ca2+ on the inositol 1,4,5-trisphosphate-induced release of Ca2+ from saponin-permeabilized single cells of the porcine coronary artery. Suematsu E, Hirata M, Sasaguri T, Hashimoto T, Kuriyama H. Comp Biochem Physiol A Comp Physiol; 1985 May 14; 82(3):645-9. PubMed ID: 2866887 [Abstract] [Full Text] [Related]
34. Stoichiometry of contraction and Ca2+ mobilization by inositol 1,4,5-trisphosphate in isolated gastric smooth muscle cells. Bitar KN, Bradford PG, Putney JW, Makhlouf GM. J Biol Chem; 1986 Dec 15; 261(35):16591-6. PubMed ID: 3491074 [Abstract] [Full Text] [Related]
35. Changes of intracellular free Ca2+ in macrophages following N-formyl chemotactic peptide stimulation. Direct measurement by the loading of quin 2. Hirata M, Hashimoto T, Hamachi T, Koga T. J Biochem; 1984 Jul 15; 96(1):9-16. PubMed ID: 6490611 [Abstract] [Full Text] [Related]
36. Requirement of Ca2+ for the production and degradation of inositol 1,4,5-trisphosphate in macrophages. Kukita M, Hirata M, Koga T. Biochim Biophys Acta; 1986 Jan 23; 885(1):121-8. PubMed ID: 3002487 [Abstract] [Full Text] [Related]
37. Heparin inhibits the inositol 1,4,5-trisphosphate-induced Ca2+ release from rat liver microsomes. Cullen PJ, Comerford JG, Dawson AP. FEBS Lett; 1988 Feb 08; 228(1):57-9. PubMed ID: 3257739 [Abstract] [Full Text] [Related]
38. Effects of heparin on inositol 1,4,5-trisphosphate and guanosine 5'-O-(3-thio triphosphate) induced calcium release in cultured smooth muscle cells from rabbit trachea. Chopra LC, Twort CH, Ward JP, Cameron IR. Biochem Biophys Res Commun; 1989 Aug 30; 163(1):262-8. PubMed ID: 2673237 [Abstract] [Full Text] [Related]
39. The effect of inositol trisphosphate on Ca2+ fluxes in insulin-secreting tumor cells. Joseph SK, Williams RJ, Corkey BE, Matschinsky FM, Williamson JR. J Biol Chem; 1984 Nov 10; 259(21):12952-5. PubMed ID: 6092355 [Abstract] [Full Text] [Related]
40. GTP- and inositol 1,4,5-trisphosphate-induced release of 45Ca2+ from a membrane store co-localized with pancreatic-islet-cell plasma membrane. Dunlop ME, Larkins RG. Biochem J; 1988 Jul 01; 253(1):67-72. PubMed ID: 2458719 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]