These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
409 related items for PubMed ID: 32578854
1. The role of Rho GTPases' substrates Rac and Cdc42 in osteoclastogenesis and relevant natural medicinal products study. Liu Y, Dou Y, Yan L, Yang X, He B, Kong L, Smith W. Biosci Rep; 2020 Jul 31; 40(7):. PubMed ID: 32578854 [Abstract] [Full Text] [Related]
2. The Regulatory Role of Rho GTPases and their Substrates in Osteoclastogenesis. Gao L, Kong L, Zhao Y. Curr Drug Targets; 2021 Jul 31; 22(9):1064-1070. PubMed ID: 32981499 [Abstract] [Full Text] [Related]
3. Filamin A regulates monocyte migration through Rho small GTPases during osteoclastogenesis. Leung R, Wang Y, Cuddy K, Sun C, Magalhaes J, Grynpas M, Glogauer M. J Bone Miner Res; 2010 May 31; 25(5):1077-91. PubMed ID: 19929439 [Abstract] [Full Text] [Related]
4. Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. Wojciak-Stothard B, Ridley AJ. J Cell Biol; 2003 Apr 28; 161(2):429-39. PubMed ID: 12719476 [Abstract] [Full Text] [Related]
5. Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field. Rajnicek AM, Foubister LE, McCaig CD. J Cell Sci; 2006 May 01; 119(Pt 9):1723-35. PubMed ID: 16595546 [Abstract] [Full Text] [Related]
6. Cdc42 and Rac family GTPases regulate mode and speed but not direction of primary fibroblast migration during platelet-derived growth factor-dependent chemotaxis. Monypenny J, Zicha D, Higashida C, Oceguera-Yanez F, Narumiya S, Watanabe N. Mol Cell Biol; 2009 May 01; 29(10):2730-47. PubMed ID: 19273601 [Abstract] [Full Text] [Related]
7. Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1. Norden PR, Kim DJ, Barry DM, Cleaver OB, Davis GE. PLoS One; 2016 May 01; 11(1):e0147758. PubMed ID: 26812085 [Abstract] [Full Text] [Related]
8. Regulation of osteoclast apoptosis and motility by small GTPase binding protein Rac1. Fukuda A, Hikita A, Wakeyama H, Akiyama T, Oda H, Nakamura K, Tanaka S. J Bone Miner Res; 2005 Dec 01; 20(12):2245-53. PubMed ID: 16294277 [Abstract] [Full Text] [Related]
9. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Hoppe AD, Swanson JA. Mol Biol Cell; 2004 Aug 01; 15(8):3509-19. PubMed ID: 15169870 [Abstract] [Full Text] [Related]
10. Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. Wang Y, Lebowitz D, Sun C, Thang H, Grynpas MD, Glogauer M. J Bone Miner Res; 2008 Feb 01; 23(2):260-70. PubMed ID: 17922611 [Abstract] [Full Text] [Related]
11. An essential role for Rac/Cdc42 GTPases in cerebellar granule neuron survival. Linseman DA, Laessig T, Meintzer MK, McClure M, Barth H, Aktories K, Heidenreich KA. J Biol Chem; 2001 Oct 19; 276(42):39123-31. PubMed ID: 11509562 [Abstract] [Full Text] [Related]
12. Rho GTPase Cdc42 is essential for human T-cell development. Smits K, Iannucci V, Stove V, Van Hauwe P, Naessens E, Meuwissen PJ, Ariën KK, Bentahir M, Plum J, Verhasselt B. Haematologica; 2010 Mar 19; 95(3):367-75. PubMed ID: 20207844 [Abstract] [Full Text] [Related]
13. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts. Wan Q, Cho E, Yokota H, Na S. Biochem Biophys Res Commun; 2013 Apr 19; 433(4):502-7. PubMed ID: 23524265 [Abstract] [Full Text] [Related]
14. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. Ge J, Burnier L, Adamopoulou M, Kwa MQ, Schaks M, Rottner K, Brakebusch C. J Biol Chem; 2018 Jun 15; 293(24):9358-9369. PubMed ID: 29700112 [Abstract] [Full Text] [Related]
15. Different roles of the small GTPases Rac1, Cdc42, and RhoG in CALEB/NGC-induced dendritic tree complexity. Schulz J, Franke K, Frick M, Schumacher S. J Neurochem; 2016 Oct 15; 139(1):26-39. PubMed ID: 27412363 [Abstract] [Full Text] [Related]
16. Modulation of the Pol II CTD Phosphorylation Code by Rac1 and Cdc42 Small GTPases in Cultured Human Cancer Cells and Its Implication for Developing a Synthetic-Lethal Cancer Therapy. Zhang B, Zhong X, Sauane M, Zhao Y, Zheng ZL. Cells; 2020 Mar 04; 9(3):. PubMed ID: 32143485 [Abstract] [Full Text] [Related]
17. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases. Oprea TI, Sklar LA, Agola JO, Guo Y, Silberberg M, Roxby J, Vestling A, Romero E, Surviladze Z, Murray-Krezan C, Waller A, Ursu O, Hudson LG, Wandinger-Ness A. PLoS One; 2015 Mar 04; 10(11):e0142182. PubMed ID: 26558612 [Abstract] [Full Text] [Related]
18. Antagonistic cross-talk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species. Diebold BA, Fowler B, Lu J, Dinauer MC, Bokoch GM. J Biol Chem; 2004 Jul 02; 279(27):28136-42. PubMed ID: 15123662 [Abstract] [Full Text] [Related]
19. Rho-GEF trio regulates osteoclast differentiation and function by Rac1/Cdc42. Gu J, Yang Z, Yuan L, Guo S, Wang D, Zhao N, Meng L, Liu H, Chen W, Ma J. Exp Cell Res; 2020 Nov 01; 396(1):112265. PubMed ID: 32898553 [Abstract] [Full Text] [Related]
20. Heterotrimeric G protein betagamma subunits stimulate FLJ00018, a guanine nucleotide exchange factor for Rac1 and Cdc42. Ueda H, Nagae R, Kozawa M, Morishita R, Kimura S, Nagase T, Ohara O, Yoshida S, Asano T. J Biol Chem; 2008 Jan 25; 283(4):1946-53. PubMed ID: 18045877 [Abstract] [Full Text] [Related] Page: [Next] [New Search]