These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 3258246

  • 1. ATP causes retinal pericytes to contract in vitro.
    Das A, Frank RN, Weber ML, Kennedy A, Reidy CA, Mancini MA.
    Exp Eye Res; 1988 Mar; 46(3):349-62. PubMed ID: 3258246
    [Abstract] [Full Text] [Related]

  • 2. Altered endothelin-1 induced contraction and second messenger generation in bovine retinal microvascular pericytes cultured in high glucose medium.
    Chakravarthy U, McGinty A, McKillop J, Anderson P, Archer DB, Trimble ER.
    Diabetologia; 1994 Jan; 37(1):36-42. PubMed ID: 8150228
    [Abstract] [Full Text] [Related]

  • 3. Effects of endothelin on cultured bovine retinal microvascular pericytes.
    Ramachandran E, Frank RN, Kennedy A.
    Invest Ophthalmol Vis Sci; 1993 Mar; 34(3):586-95. PubMed ID: 8449678
    [Abstract] [Full Text] [Related]

  • 4. Insulin-induced hyperpolarization in retinal capillary pericytes.
    Berweck S, Thieme H, Lepple-Wienhues A, Helbig H, Wiederholt M.
    Invest Ophthalmol Vis Sci; 1993 Nov; 34(12):3402-7. PubMed ID: 8225875
    [Abstract] [Full Text] [Related]

  • 5. Effect of CO2 on intracellular pH and contraction of retinal capillary pericytes.
    Chen Q, Anderson DR.
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):643-51. PubMed ID: 9071218
    [Abstract] [Full Text] [Related]

  • 6. Adenosine-induced relaxation of cultured bovine retinal pericytes.
    Matsugi T, Chen Q, Anderson DR.
    Invest Ophthalmol Vis Sci; 1997 Dec; 38(13):2695-701. PubMed ID: 9418721
    [Abstract] [Full Text] [Related]

  • 7. The effect of endothelin 1 on the retinal microvascular pericyte.
    Chakravarthy U, Gardiner TA, Anderson P, Archer DB, Trimble ER.
    Microvasc Res; 1992 May; 43(3):241-54. PubMed ID: 1321943
    [Abstract] [Full Text] [Related]

  • 8. F-actin polymerization contributes to pericyte contractility in retinal capillaries.
    Kureli G, Yilmaz-Ozcan S, Erdener SE, Donmez-Demir B, Yemisci M, Karatas H, Dalkara T.
    Exp Neurol; 2020 Oct; 332():113392. PubMed ID: 32610106
    [Abstract] [Full Text] [Related]

  • 9. Contractile responses of cultured bovine retinal pericytes to angiotensin II.
    Matsugi T, Chen Q, Anderson DR.
    Arch Ophthalmol; 1997 Oct; 115(10):1281-5. PubMed ID: 9338674
    [Abstract] [Full Text] [Related]

  • 10. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway.
    Haefliger IO, Zschauer A, Anderson DR.
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):991-7. PubMed ID: 7907321
    [Abstract] [Full Text] [Related]

  • 11. Actin in cultured bovine retinal capillary pericytes: morphological and functional correlation.
    Chan LS, Li WY, Khatami M, Rockey JH.
    Exp Eye Res; 1986 Jul; 43(1):41-54. PubMed ID: 2942415
    [Abstract] [Full Text] [Related]

  • 12. Inhibition of bovine retinal microvascular pericyte proliferation in vitro by adenosine.
    Jackson JA, Carlson EC.
    Am J Physiol; 1992 Aug; 263(2 Pt 2):H634-40. PubMed ID: 1510160
    [Abstract] [Full Text] [Related]

  • 13. ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina.
    Kawamura H, Sugiyama T, Wu DM, Kobayashi M, Yamanishi S, Katsumura K, Puro DG.
    J Physiol; 2003 Sep 15; 551(Pt 3):787-99. PubMed ID: 12876212
    [Abstract] [Full Text] [Related]

  • 14. Glaucoma, capillaries and pericytes. 2. Identification and characterization of retinal pericytes in culture.
    Anderson DR, Davis EB.
    Ophthalmologica; 1996 Sep 15; 210(5):263-8. PubMed ID: 8878208
    [Abstract] [Full Text] [Related]

  • 15. Adenosine activates ATP-sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors.
    Li Q, Puro DG.
    Brain Res; 2001 Jul 13; 907(1-2):93-9. PubMed ID: 11430889
    [Abstract] [Full Text] [Related]

  • 16. Sodium-coupled glucose transporter as a functional glucose sensor of retinal microvascular circulation.
    Wakisaka M, Kitazono T, Kato M, Nakamura U, Yoshioka M, Uchizono Y, Yoshinari M.
    Circ Res; 2001 Jun 08; 88(11):1183-8. PubMed ID: 11397785
    [Abstract] [Full Text] [Related]

  • 17. Suppression of CO2-induced relaxation of bovine retinal pericytes by angiotensin II.
    Matsugi T, Chen Q, Anderson DR.
    Invest Ophthalmol Vis Sci; 1997 Mar 08; 38(3):652-7. PubMed ID: 9071219
    [Abstract] [Full Text] [Related]

  • 18. The role of pulsatile flow in controlling microvascular retinal endothelial and pericyte cell apoptosis and proliferation.
    Walshe TE, Connell P, Cryan L, Ferguson G, O'Brien C, Cahill PA.
    Cardiovasc Res; 2011 Feb 15; 89(3):661-70. PubMed ID: 21030535
    [Abstract] [Full Text] [Related]

  • 19. Intracellular protein glycation in cultured retinal capillary pericytes and endothelial cells exposed to high-glucose concentration.
    Chibber R, Molinatti PA, Kohner EM.
    Cell Mol Biol (Noisy-le-grand); 1999 Feb 15; 45(1):47-57. PubMed ID: 10099839
    [Abstract] [Full Text] [Related]

  • 20. Contractile proteins in pericytes at the blood-brain and blood-retinal barriers.
    Bandopadhyay R, Orte C, Lawrenson JG, Reid AR, De Silva S, Allt G.
    J Neurocytol; 2001 Jan 15; 30(1):35-44. PubMed ID: 11577244
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.