These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 32592497

  • 1. Light adaptation mechanisms in the eye of the fiddler crab Afruca tangeri.
    Brodrick EA, Roberts NW, Sumner-Rooney L, Schlepütz CM, How MJ.
    J Comp Neurol; 2021 Feb; 529(3):616-634. PubMed ID: 32592497
    [Abstract] [Full Text] [Related]

  • 2. Fiddler crab electroretinograms reveal vast circadian shifts in visual sensitivity and temporal summation in dim light.
    Brodrick EA, How MJ, Hemmi JM.
    J Exp Biol; 2022 Mar 01; 225(5):. PubMed ID: 35156128
    [Abstract] [Full Text] [Related]

  • 3. Daily changes of structure, function and rhodopsin content in the compound eye of the crab Hemigrapsus sanguineus.
    Arikawa K, Kawamata K, Suzuki T, Eguchi E.
    J Comp Physiol A; 1987 Aug 01; 161(2):161-74. PubMed ID: 3625570
    [Abstract] [Full Text] [Related]

  • 4. Functional anatomy of the fiddler crab compound eye (Uca vomeris: Ocypodidae, Brachyura, Decapoda).
    Alkaladi A, Zeil J.
    J Comp Neurol; 2014 Apr 15; 522(6):1264-83. PubMed ID: 24114990
    [Abstract] [Full Text] [Related]

  • 5. The visual ecology of fiddler crabs.
    Zeil J, Hemmi JM.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jan 15; 192(1):1-25. PubMed ID: 16341863
    [Abstract] [Full Text] [Related]

  • 6. Ommatidial structure in relation to turnover of photoreceptor membrane in the locust.
    Williams DS.
    Cell Tissue Res; 1982 Jan 15; 225(3):595-617. PubMed ID: 7127410
    [Abstract] [Full Text] [Related]

  • 7. New Vectors of TTX Analogues in the North Atlantic Coast: The Edible Crabs Afruca tangeri and Carcinus maenas.
    Lage S, Ten Brink F, Canário AVM, Da Silva JP.
    Mar Drugs; 2023 May 25; 21(6):. PubMed ID: 37367645
    [Abstract] [Full Text] [Related]

  • 8. Fiddler crabs (Afruca tangeri) detect second-order motion in both intensity and polarization.
    Smithers SP, Brett MF, How MJ, Scott-Samuel NE, Roberts NW.
    Commun Biol; 2024 Oct 03; 7(1):1255. PubMed ID: 39362984
    [Abstract] [Full Text] [Related]

  • 9. Systematic variations in microvilli banding patterns along fiddler crab rhabdoms.
    Alkaladi A, How MJ, Zeil J.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Feb 03; 199(2):99-113. PubMed ID: 23108879
    [Abstract] [Full Text] [Related]

  • 10. Diurnal changes in retinula cell sensitivities and receptive fields (two-dimensional angular sensitivity functions) in the apposition eyes of Ligia exotica (Crustacea, Isopoda).
    Hariyama T, Meyer-Rochow VB, Kawauchi T, Takaku Y, Tsukahara Y.
    J Exp Biol; 2001 Jan 03; 204(Pt 2):239-48. PubMed ID: 11136610
    [Abstract] [Full Text] [Related]

  • 11. The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab Uca lactea annulipes (Ocypodidae, Brachyura, Decapoda).
    Zeil J, Al-Mutairi M.
    J Exp Biol; 1996 Jan 03; 199(Pt 7):1569-77. PubMed ID: 9319471
    [Abstract] [Full Text] [Related]

  • 12. Light intensity appears to be more important than an endogenous seasonal clock for regulating structural rhythms in the lateral eye of the horseshoe crab.
    Zarse CA, Deaton EA, Weiner WW.
    Biomed Sci Instrum; 2004 Jan 03; 40():407-12. PubMed ID: 15133992
    [Abstract] [Full Text] [Related]

  • 13. Increasing the illumination slowly over several weeks protects against light damage in the eyes of the crustacean Mysis relicta.
    Viljanen MLM, Nevala NE, Calais-Granö CL, Lindström KMW, Donner K.
    J Exp Biol; 2017 Aug 01; 220(Pt 15):2798-2808. PubMed ID: 28515237
    [Abstract] [Full Text] [Related]

  • 14. Target Detection Is Enhanced by Polarization Vision in a Fiddler Crab.
    How MJ, Christy JH, Temple SE, Hemmi JM, Marshall NJ, Roberts NW.
    Curr Biol; 2015 Dec 07; 25(23):3069-73. PubMed ID: 26585278
    [Abstract] [Full Text] [Related]

  • 15. Spectral sensitivity of four species of fiddler crabs (Uca pugnax, Uca pugilator, Uca vomeris and Uca tangeri) measured by in situ microspectrophotometry.
    Jordão JM, Cronin TW, Oliveira RF.
    J Exp Biol; 2007 Feb 07; 210(Pt 3):447-53. PubMed ID: 17234614
    [Abstract] [Full Text] [Related]

  • 16. The crustacean eye: dark/light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage.
    Meyer-Rochow VB.
    Zoolog Sci; 2001 Dec 07; 18(9):1175-97. PubMed ID: 11911074
    [Abstract] [Full Text] [Related]

  • 17. Single and multiple visual systems in arthropods.
    Wald G.
    J Gen Physiol; 1968 Feb 07; 51(2):125-56. PubMed ID: 5641632
    [Abstract] [Full Text] [Related]

  • 18. Visual adaptations in the night-active wasp Apoica pallens.
    Greiner B.
    J Comp Neurol; 2006 Mar 20; 495(3):255-62. PubMed ID: 16440299
    [Abstract] [Full Text] [Related]

  • 19. Behavioral patterns of two fiddler crab species Uca rapax and Uca tangeri in a seminatural mangrove system.
    van Himbeeck RAF, Huizinga W, Roessink I, Peeters ETHM.
    Zoo Biol; 2019 Aug 20; 38(4):343-354. PubMed ID: 31056807
    [Abstract] [Full Text] [Related]

  • 20. Evidence for a two pigment visual system in the fiddler crab, Uca thayeri.
    Horch K, Salmon M, Forward R.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jul 20; 188(6):493-9. PubMed ID: 12122468
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.