These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
216 related items for PubMed ID: 32601897
1. A simple mesoporous silica nanoparticle-based fluorescence aptasensor for the detection of zearalenone in grain and cereal products. Tan H, Guo T, Zhou H, Dai H, Yu Y, Zhu H, Wang H, Fu Y, Zhang Y, Ma L. Anal Bioanal Chem; 2020 Sep; 412(23):5627-5635. PubMed ID: 32601897 [Abstract] [Full Text] [Related]
2. Surface-enhanced Raman spectroscopy aptasensor for simultaneous determination of ochratoxin A and zearalenone using Au@Ag core-shell nanoparticles and gold nanorods. Chen R, Li S, Sun Y, Huo B, Xia Y, Qin Y, Li S, Shi B, He D, Liang J, Gao Z. Mikrochim Acta; 2021 Jul 31; 188(8):281. PubMed ID: 34331147 [Abstract] [Full Text] [Related]
3. A fluorometric method for aptamer-based simultaneous determination of two kinds of the fusarium mycotoxins zearalenone and fumonisin B1 making use of gold nanorods and upconversion nanoparticles. He D, Wu Z, Cui B, Jin Z, Xu E. Mikrochim Acta; 2020 Apr 01; 187(4):254. PubMed ID: 32239300 [Abstract] [Full Text] [Related]
4. Development of a "Signal-On" Fluorescent Aptasensor for Highly Selective and Sensitive Detection of ZEN in Cereal Products Using Nitrogen-Doped Carbon Dots Based on the Inner Filter Effect. Sun Q, Zhou Y, Ma M, Zhang F, Li S, Chen Z, Fang Y, Le T, Xing F. Biosensors (Basel); 2024 Jul 17; 14(7):. PubMed ID: 39056623 [Abstract] [Full Text] [Related]
6. Inner filter effect-modulated ratiometric fluorescence aptasensor based on competition strategy for zearalenone detection in cereal crops: Using mitoxantrone as quencher of CdTe QDs@SiO2. Bi X, Li L, Liu X, Luo L, Cheng Z, Sun J, Cai Z, Liu J, You T. Food Chem; 2021 Jul 01; 349():129171. PubMed ID: 33582542 [Abstract] [Full Text] [Related]
7. Colorimetric zearalenone assay based on the use of an aptamer and of gold nanoparticles with peroxidase-like activity. Sun S, Zhao R, Feng S, Xie Y. Mikrochim Acta; 2018 Nov 07; 185(12):535. PubMed ID: 30406298 [Abstract] [Full Text] [Related]
8. A novel bioassay based on aptamer-functionalized magnetic nanoparticle for the detection of zearalenone using time resolved-fluorescence NaYF4: Ce/Tb nanoparticles as signal probe. Niazi S, Wang X, Pasha I, Khan IM, Zhao S, Shoaib M, Wu S, Wang Z. Talanta; 2018 Aug 15; 186():97-103. PubMed ID: 29784425 [Abstract] [Full Text] [Related]
9. An aptamer-based fluorometric zearalenone assay using a lighting-up silver nanocluster probe and catalyzed by a hairpin assembly. Yin N, Yuan S, Zhang M, Wang J, Li Y, Peng Y, Bai J, Ning B, Liang J, Gao Z. Mikrochim Acta; 2019 Nov 12; 186(12):765. PubMed ID: 31713694 [Abstract] [Full Text] [Related]
10. Towards high-efficient online specific discrimination of zearalenone by using gold nanoparticles@aptamer-based affinity monolithic column. Xu J, Chi J, Lin C, Lin X, Xie Z. J Chromatogr A; 2020 Jun 07; 1620():461026. PubMed ID: 32178860 [Abstract] [Full Text] [Related]
11. Quantification of zearalenone in mildewing cereal crops using an innovative photoelectrochemical aptamer sensing strategy based on ZnO-NGQDs composites. Luo L, Liu X, Ma S, Li L, You T. Food Chem; 2020 Aug 30; 322():126778. PubMed ID: 32305007 [Abstract] [Full Text] [Related]
12. Development of Fe3O4@Au nanoparticles coupled to Au@Ag core-shell nanoparticles for the sensitive detection of zearalenone. Chen R, Sun Y, Huo B, Mao Z, Wang X, Li S, Lu R, Li S, Liang J, Gao Z. Anal Chim Acta; 2021 Oct 02; 1180():338888. PubMed ID: 34538331 [Abstract] [Full Text] [Related]
13. Fluorescent aptamer-modified mesoporous silica nanoparticles for quantitative acetamiprid detection. He K, Yang J, Shi Q, Guan L, Sun L, Chen Z, Feng J, Dong S. Environ Sci Pollut Res Int; 2022 Dec 02; 29(58):88182-88192. PubMed ID: 35831655 [Abstract] [Full Text] [Related]
14. Fabrication of pioneering 3D sakura-shaped metal-organic coordination polymers Cu@L-Glu phenomenal for signal amplification in highly sensitive detection of zearalenone. Ji X, Yu C, Wen Y, Chen J, Yu Y, Zhang C, Gao R, Mu X, He J. Biosens Bioelectron; 2019 Mar 15; 129():139-146. PubMed ID: 30690178 [Abstract] [Full Text] [Related]
15. Fluorometric lateral flow immunochromatographic zearalenone assay by exploiting a quencher system composed of carbon dots and silver nanoparticles. Li S, Wang J, Sheng W, Wen W, Gu Y, Wang S. Mikrochim Acta; 2018 Jul 25; 185(8):388. PubMed ID: 30046913 [Abstract] [Full Text] [Related]
16. Aptamer-Based Lateral Flow Test Strip for Rapid Detection of Zearalenone in Corn Samples. Wu S, Liu L, Duan N, Li Q, Zhou Y, Wang Z. J Agric Food Chem; 2018 Feb 28; 66(8):1949-1954. PubMed ID: 29425043 [Abstract] [Full Text] [Related]
17. Monitoring zearalenone in corn flour utilizing novel self-enhanced electrochemiluminescence aptasensor based on NGQDs-NH2-Ru@SiO2 luminophore. Luo L, Ma S, Li L, Liu X, Zhang J, Li X, Liu D, You T. Food Chem; 2019 Sep 15; 292():98-105. PubMed ID: 31054698 [Abstract] [Full Text] [Related]
18. A "turnon" aptasensor for simultaneous and time-resolved fluorometric determination of zearalenone, trichothecenes A and aflatoxin B1 using WS2 as a quencher. Niazi S, Khan IM, Yu Y, Pasha I, Shoaib M, Mohsin A, Mushtaq BS, Akhtar W, Wang Z. Mikrochim Acta; 2019 Jul 24; 186(8):575. PubMed ID: 31342182 [Abstract] [Full Text] [Related]
19. A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B1. Tan H, Ma L, Guo T, Zhou H, Chen L, Zhang Y, Dai H, Yu Y. Anal Chim Acta; 2019 Aug 30; 1068():87-95. PubMed ID: 31072481 [Abstract] [Full Text] [Related]
20. Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone. Guo Z, Gao L, Yin L, Arslan M, El-Seedi HR, Zou X. Food Chem; 2023 Mar 01; 403():134384. PubMed ID: 36179642 [Abstract] [Full Text] [Related] Page: [Next] [New Search]