These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


146 related items for PubMed ID: 32602463

  • 1. Alcids 'fly' at efficient Strouhal numbers in both air and water but vary stroke velocity and angle.
    Lapsansky AB, Zatz D, Tobalske BW.
    Elife; 2020 Jun 30; 9():. PubMed ID: 32602463
    [Abstract] [Full Text] [Related]

  • 2. Efficient cruising for swimming and flying animals is dictated by fluid drag.
    Floryan D, Van Buren T, Smits AJ.
    Proc Natl Acad Sci U S A; 2018 Aug 07; 115(32):8116-8118. PubMed ID: 29915088
    [Abstract] [Full Text] [Related]

  • 3. Upstroke-based acceleration and head stabilization are the norm for the wing-propelled swimming of alcid seabirds.
    Lapsansky AB, Tobalske BW.
    J Exp Biol; 2019 Jul 02; 222(Pt 13):. PubMed ID: 31160426
    [Abstract] [Full Text] [Related]

  • 4. Swim speeds and stroke patterns in wing-propelled divers: a comparison among alcids and a penguin.
    Watanuki Y, Wanless S, Harris M, Lovvorn JR, Miyazaki M, Tanaka H, Sato K.
    J Exp Biol; 2006 Apr 02; 209(Pt 7):1217-30. PubMed ID: 16547294
    [Abstract] [Full Text] [Related]

  • 5. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds.
    Nudds RL, Taylor GK, Thomas AL.
    Proc Biol Sci; 2004 Oct 07; 271(1552):2071-6. PubMed ID: 15451698
    [Abstract] [Full Text] [Related]

  • 6. Vortex interactions with flapping wings and fins can be unpredictable.
    Lentink D, Van Heijst GF, Muijres FT, Van Leeuwen JL.
    Biol Lett; 2010 Jun 23; 6(3):394-7. PubMed ID: 20129947
    [Abstract] [Full Text] [Related]

  • 7. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV, Chan WL.
    Bioinspir Biomim; 2018 Dec 07; 14(1):016015. PubMed ID: 30523879
    [Abstract] [Full Text] [Related]

  • 8. Evolution of avian flight: muscles and constraints on performance.
    Tobalske BW.
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep 26; 371(1704):. PubMed ID: 27528773
    [Abstract] [Full Text] [Related]

  • 9. Mechanical versus physiological determinants of swimming speeds in diving Brünnich's guillemots.
    Lovvorn JR, Croll DA, Liggins GA.
    J Exp Biol; 1999 Jul 26; 202(Pt 13):1741-52. PubMed ID: 10359677
    [Abstract] [Full Text] [Related]

  • 10. Modulation of Flight Muscle Recruitment and Wing Rotation Enables Hummingbirds to Mitigate Aerial Roll Perturbations.
    Ravi S, Noda R, Gagliardi S, Kolomenskiy D, Combes S, Liu H, Biewener AA, Konow N.
    Curr Biol; 2020 Jan 20; 30(2):187-195.e4. PubMed ID: 31902723
    [Abstract] [Full Text] [Related]

  • 11. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W, Stamhuis EJ.
    Bioinspir Biomim; 2018 Aug 16; 13(5):056015. PubMed ID: 30043756
    [Abstract] [Full Text] [Related]

  • 12. High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins.
    Elliott KH, Ricklefs RE, Gaston AJ, Hatch SA, Speakman JR, Davoren GK.
    Proc Natl Acad Sci U S A; 2013 Jun 04; 110(23):9380-4. PubMed ID: 23690614
    [Abstract] [Full Text] [Related]

  • 13. Biofluiddynamic scaling of flapping, spinning and translating fins and wings.
    Lentink D, Dickinson MH.
    J Exp Biol; 2009 Aug 04; 212(Pt 16):2691-704. PubMed ID: 19648414
    [Abstract] [Full Text] [Related]

  • 14. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.
    Kruyt JW, van Heijst GF, Altshuler DL, Lentink D.
    J R Soc Interface; 2015 Apr 06; 12(105):. PubMed ID: 25788539
    [Abstract] [Full Text] [Related]

  • 15. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient.
    Groom DJ, Toledo MC, Welch KC.
    J Comp Physiol B; 2017 Jan 06; 187(1):165-182. PubMed ID: 27431590
    [Abstract] [Full Text] [Related]

  • 16. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD, Lentink D.
    J Exp Biol; 2016 Apr 06; 219(Pt 7):920-32. PubMed ID: 27030773
    [Abstract] [Full Text] [Related]

  • 17. The biomechanical origin of extreme wing allometry in hummingbirds.
    Skandalis DA, Segre PS, Bahlman JW, Groom DJE, Welch KC, Witt CC, McGuire JA, Dudley R, Lentink D, Altshuler DL.
    Nat Commun; 2017 Oct 19; 8(1):1047. PubMed ID: 29051535
    [Abstract] [Full Text] [Related]

  • 18. Flap or soar? How a flight generalist responds to its aerial environment.
    Shamoun-Baranes J, Bouten W, van Loon EE, Meijer C, Camphuysen CJ.
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep 26; 371(1704):. PubMed ID: 27528785
    [Abstract] [Full Text] [Related]

  • 19. Aquatic burst locomotion by hydroplaning and paddling in common eiders (Somateria mollissima).
    Gough WT, Farina SC, Fish FE.
    J Exp Biol; 2015 Jun 26; 218(Pt 11):1632-8. PubMed ID: 25852065
    [Abstract] [Full Text] [Related]

  • 20. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M, Kang CK.
    Bioinspir Biomim; 2015 May 06; 10(3):036007. PubMed ID: 25946079
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.