These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
233 related items for PubMed ID: 32621789
1. Using deep learning to predict beam-tunable Pareto optimal dose distribution for intensity-modulated radiation therapy. Bohara G, Sadeghnejad Barkousaraie A, Jiang S, Nguyen D. Med Phys; 2020 Sep; 47(9):3898-3912. PubMed ID: 32621789 [Abstract] [Full Text] [Related]
2. Incorporating human and learned domain knowledge into training deep neural networks: A differentiable dose-volume histogram and adversarial inspired framework for generating Pareto optimal dose distributions in radiation therapy. Nguyen D, McBeth R, Sadeghnejad Barkousaraie A, Bohara G, Shen C, Jia X, Jiang S. Med Phys; 2020 Mar; 47(3):837-849. PubMed ID: 31821577 [Abstract] [Full Text] [Related]
3. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy. Lee EK, Fox T, Crocker I. Int J Radiat Oncol Biol Phys; 2006 Jan 01; 64(1):301-20. PubMed ID: 16289912 [Abstract] [Full Text] [Related]
4. Automatic dose prediction using deep learning and plan optimization with finite-element control for intensity modulated radiation therapy. Shen Y, Tang X, Lin S, Jin X, Ding J, Shao M. Med Phys; 2024 Jan 01; 51(1):545-555. PubMed ID: 37748133 [Abstract] [Full Text] [Related]
5. A feasibility study on deep learning-based individualized 3D dose distribution prediction. Ma J, Nguyen D, Bai T, Folkerts M, Jia X, Lu W, Zhou L, Jiang S. Med Phys; 2021 Aug 01; 48(8):4438-4447. PubMed ID: 34091925 [Abstract] [Full Text] [Related]
6. Attention-aware 3D U-Net convolutional neural network for knowledge-based planning 3D dose distribution prediction of head-and-neck cancer. Osman AFI, Tamam NM. J Appl Clin Med Phys; 2022 Jul 01; 23(7):e13630. PubMed ID: 35533234 [Abstract] [Full Text] [Related]
7. Site-agnostic 3D dose distribution prediction with deep learning neural networks. Mashayekhi M, Tapia IR, Balagopal A, Zhong X, Barkousaraie AS, McBeth R, Lin MH, Jiang S, Nguyen D. Med Phys; 2022 Mar 01; 49(3):1391-1406. PubMed ID: 35037276 [Abstract] [Full Text] [Related]
8. Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations. Barragán-Montero AM, Nguyen D, Lu W, Lin MH, Norouzi-Kandalan R, Geets X, Sterpin E, Jiang S. Med Phys; 2019 Aug 01; 46(8):3679-3691. PubMed ID: 31102554 [Abstract] [Full Text] [Related]
9. Input feature design and its impact on the performance of deep learning models for predicting fluence maps in intensity-modulated radiation therapy. Li X, Ge Y, Wu Q, Wang C, Sheng Y, Wang W, Stephens H, Yin FF, Wu QJ. Phys Med Biol; 2022 Oct 21; 67(21):. PubMed ID: 36206747 [Abstract] [Full Text] [Related]
10. Deep learning architecture with transformer and semantic field alignment for voxel-level dose prediction on brain tumors. Yang J, Zhao Y, Zhang F, Liao M, Yang X. Med Phys; 2023 Feb 21; 50(2):1149-1161. PubMed ID: 36434793 [Abstract] [Full Text] [Related]
11. A fast deep learning approach for beam orientation optimization for prostate cancer treated with intensity-modulated radiation therapy. Sadeghnejad Barkousaraie A, Ogunmolu O, Jiang S, Nguyen D. Med Phys; 2020 Mar 21; 47(3):880-897. PubMed ID: 31868927 [Abstract] [Full Text] [Related]
12. A method of using deep learning to predict three-dimensional dose distributions for intensity-modulated radiotherapy of rectal cancer. Zhou J, Peng Z, Song Y, Chang Y, Pei X, Sheng L, Xu XG. J Appl Clin Med Phys; 2020 May 21; 21(5):26-37. PubMed ID: 32281254 [Abstract] [Full Text] [Related]
13. PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning. Fiege J, McCurdy B, Potrebko P, Champion H, Cull A. Med Phys; 2011 Sep 21; 38(9):5217-29. PubMed ID: 21978066 [Abstract] [Full Text] [Related]
14. Evaluation of dose-volume histogram prediction for organ-at risk and planning target volume based on machine learning. Jiao SX, Wang ML, Chen LX, Liu XW. Sci Rep; 2021 Feb 04; 11(1):3117. PubMed ID: 33542427 [Abstract] [Full Text] [Related]
15. A hybrid optimization strategy for deliverable intensity-modulated radiotherapy plan generation using deep learning-based dose prediction. Sun Z, Xia X, Fan J, Zhao J, Zhang K, Wang J, Hu W. Med Phys; 2022 Mar 04; 49(3):1344-1356. PubMed ID: 35043971 [Abstract] [Full Text] [Related]
16. Volumetric-modulated arc therapy for the treatment of a large planning target volume in thoracic esophageal cancer. Abbas AS, Moseley D, Kassam Z, Kim SM, Cho C. J Appl Clin Med Phys; 2013 May 06; 14(3):4269. PubMed ID: 23652258 [Abstract] [Full Text] [Related]
17. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans. Yuan L, Ge Y, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Med Phys; 2012 Nov 06; 39(11):6868-78. PubMed ID: 23127079 [Abstract] [Full Text] [Related]
18. Efficient dose-volume histogram-based pretreatment patient-specific quality assurance methodology with combined deep learning and machine learning models for volumetric modulated arc radiotherapy. Gong C, Zhu K, Lin C, Han C, Lu Z, Chen Y, Yu C, Hou L, Zhou Y, Yi J, Ai Y, Xiang X, Xie C, Jin X. Med Phys; 2022 Dec 06; 49(12):7779-7790. PubMed ID: 36190117 [Abstract] [Full Text] [Related]
19. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy. Pokhrel D, Sood S, Badkul R, Jiang H, McClinton C, Lominska C, Kumar P, Wang F. J Appl Clin Med Phys; 2016 May 08; 17(3):277-293. PubMed ID: 27167284 [Abstract] [Full Text] [Related]
20. Predicting dose-volume histograms for organs-at-risk in IMRT planning. Appenzoller LM, Michalski JM, Thorstad WL, Mutic S, Moore KL. Med Phys; 2012 Dec 08; 39(12):7446-61. PubMed ID: 23231294 [Abstract] [Full Text] [Related] Page: [Next] [New Search]