These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


142 related items for PubMed ID: 32622207

  • 1. The relationship between tibiofemoral geometry and musculoskeletal function during normal activity.
    Martelli S, Sancisi N, Conconi M, Pandy MG, Kersh ME, Parenti-Castelli V, Reynolds KJ.
    Gait Posture; 2020 Jul; 80():374-382. PubMed ID: 32622207
    [Abstract] [Full Text] [Related]

  • 2. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P, Sartori M, Besier TF, Fregly BJ, Delp SL, Banks SA, Pandy MG, D'Lima DD, Lloyd DG.
    J Biomech; 2013 Nov 15; 46(16):2778-86. PubMed ID: 24074941
    [Abstract] [Full Text] [Related]

  • 3. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.
    Lerner ZF, DeMers MS, Delp SL, Browning RC.
    J Biomech; 2015 Feb 26; 48(4):644-650. PubMed ID: 25595425
    [Abstract] [Full Text] [Related]

  • 4. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.
    Peng Y, Zhang Z, Gao Y, Chen Z, Xin H, Zhang Q, Fan X, Jin Z.
    Med Eng Phys; 2018 Feb 26; 52():31-40. PubMed ID: 29269224
    [Abstract] [Full Text] [Related]

  • 5. Six-Degree-of-Freedom Tibiofemoral and Patellofemoral Joint Motion During Activities of Daily Living.
    Thomeer L, Guan S, Gray H, Schache A, de Steiger R, Pandy M.
    Ann Biomed Eng; 2021 Apr 26; 49(4):1183-1198. PubMed ID: 33094419
    [Abstract] [Full Text] [Related]

  • 6. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
    Guess TM, Stylianou AP, Kia M.
    J Biomech Eng; 2014 Feb 26; 136(2):021032. PubMed ID: 24389997
    [Abstract] [Full Text] [Related]

  • 7. Modulating tibiofemoral contact force in the sheep hind limb via treadmill walking: Predictions from an opensim musculoskeletal model.
    Lerner ZF, Gadomski BC, Ipson AK, Haussler KK, Puttlitz CM, Browning RC.
    J Orthop Res; 2015 Aug 26; 33(8):1128-33. PubMed ID: 25721318
    [Abstract] [Full Text] [Related]

  • 8. A subject-specific musculoskeletal model to predict the tibiofemoral contact forces during daily living activities.
    Zhang L, Liu G, Yan Y, Han B, Li H, Ma J, Wang X.
    Comput Methods Biomech Biomed Engin; 2023 Jun 26; 26(8):972-985. PubMed ID: 35852103
    [Abstract] [Full Text] [Related]

  • 9. Tibio-femoral loading during human gait and stair climbing.
    Taylor WR, Heller MO, Bergmann G, Duda GN.
    J Orthop Res; 2004 May 26; 22(3):625-32. PubMed ID: 15099644
    [Abstract] [Full Text] [Related]

  • 10. Tibiofemoral joint contact forces and knee kinematics during squatting.
    Smith SM, Cockburn RA, Hemmerich A, Li RM, Wyss UP.
    Gait Posture; 2008 Apr 26; 27(3):376-86. PubMed ID: 17583512
    [Abstract] [Full Text] [Related]

  • 11. Anterior cruciate ligament-deficient patients with passive knee joint laxity have a decreased range of anterior-posterior motion during active movements.
    Boeth H, Duda GN, Heller MO, Ehrig RM, Doyscher R, Jung T, Moewis P, Scheffler S, Taylor WR.
    Am J Sports Med; 2013 May 26; 41(5):1051-7. PubMed ID: 23492824
    [Abstract] [Full Text] [Related]

  • 12. Development and validation of a subject-specific moving-axis tibiofemoral joint model using MRI and EOS imaging during a quasi-static lunge.
    Dzialo CM, Pedersen PH, Simonsen CW, Jensen KK, de Zee M, Andersen MS.
    J Biomech; 2018 Apr 27; 72():71-80. PubMed ID: 29567307
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Changes in tibiofemoral forces due to variations in muscle activity during walking.
    Demers MS, Pal S, Delp SL.
    J Orthop Res; 2014 Jun 27; 32(6):769-76. PubMed ID: 24615885
    [Abstract] [Full Text] [Related]

  • 16. Immediate effects of valgus knee bracing on tibiofemoral contact forces and knee muscle forces.
    Hall M, Diamond LE, Lenton GK, Pizzolato C, Saxby DJ.
    Gait Posture; 2019 Feb 27; 68():55-62. PubMed ID: 30458429
    [Abstract] [Full Text] [Related]

  • 17. The effects of walking speed on tibiofemoral loading estimated via musculoskeletal modeling.
    Lerner ZF, Haight DJ, DeMers MS, Board WJ, Browning RC.
    J Appl Biomech; 2014 Apr 27; 30(2):197-205. PubMed ID: 23878264
    [Abstract] [Full Text] [Related]

  • 18. Estimation of bone-on-bone contact forces in the tibiofemoral joint during walking.
    Thambyah A, Pereira BP, Wyss U.
    Knee; 2005 Oct 27; 12(5):383-8. PubMed ID: 16146627
    [Abstract] [Full Text] [Related]

  • 19. A comprehensive assessment of the musculoskeletal system: The CAMS-Knee data set.
    Taylor WR, Schütz P, Bergmann G, List R, Postolka B, Hitz M, Dymke J, Damm P, Duda G, Gerber H, Schwachmeyer V, Hosseini Nasab SH, Trepczynski A, Kutzner I.
    J Biomech; 2017 Dec 08; 65():32-39. PubMed ID: 29037443
    [Abstract] [Full Text] [Related]

  • 20. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment.
    Kutzner I, Bender A, Dymke J, Duda G, von Roth P, Bergmann G.
    Bone Joint J; 2017 Jun 08; 99-B(6):779-787. PubMed ID: 28566397
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.