These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


213 related items for PubMed ID: 32630133

  • 21. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM, Dick TJM, Giest TN, Nuckols RW, Lewek MD, Saul KR, Sawicki GS.
    J Neuroeng Rehabil; 2019 May 15; 16(1):57. PubMed ID: 31092269
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Lower limb muscle co-contraction and joint loading of flip-flops walking in male wearers.
    Chen TL, Wong DW, Xu Z, Tan Q, Wang Y, Luximon A, Zhang M.
    PLoS One; 2018 May 15; 13(3):e0193653. PubMed ID: 29561862
    [Abstract] [Full Text] [Related]

  • 25. Validation of a smart shoe for estimating foot progression angle during walking gait.
    Xia H, Xu J, Wang J, Hunt MA, Shull PB.
    J Biomech; 2017 Aug 16; 61():193-198. PubMed ID: 28780187
    [Abstract] [Full Text] [Related]

  • 26. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control.
    Dallmann CJ, Dürr V, Schmitz J.
    Proc Biol Sci; 2016 Jan 27; 283(1823):. PubMed ID: 26791608
    [Abstract] [Full Text] [Related]

  • 27. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G, Liu G, Ma S, Wang T, Zhao J, Zhu Y.
    Technol Health Care; 2017 Jul 20; 25(S1):267-273. PubMed ID: 28582915
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Multiphase and Multivariable Linear Controllers That Account for the Joint Torques in Normal Human Walking.
    Altinkaynak ES, Roig G, Braun DJ.
    IEEE Trans Biomed Eng; 2020 Jun 20; 67(6):1573-1584. PubMed ID: 31502961
    [Abstract] [Full Text] [Related]

  • 31. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W, Fong J, Crocher V, Lee PVS, Oetomo D, Tan Y, Ackland DC.
    J Biomech; 2018 Apr 27; 72():7-16. PubMed ID: 29506759
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.
    Hwang B, Jeon D.
    Sensors (Basel); 2015 Apr 09; 15(4):8337-57. PubMed ID: 25860074
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Utility of Inter-subject Transfer Learning for Wearable-Sensor-Based Joint Torque Prediction Models.
    Sloboda J, Stegall P, McKindles RJ, Stirling L, Siu HC.
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov 09; 2021():4901-4907. PubMed ID: 34892307
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Effect of Gait Speed on Trajectory Prediction Using Deep Learning Models for Exoskeleton Applications.
    Kolaghassi R, Marcelli G, Sirlantzis K.
    Sensors (Basel); 2023 Jun 18; 23(12):. PubMed ID: 37420852
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.