These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Epigenome editing of the CFTR-locus for treatment of cystic fibrosis. Kabadi AM, Machlin L, Dalal N, Lee RE, McDowell I, Shah NN, Drowley L, Randell SH, Reddy TE. J Cyst Fibros; 2022 Jan; 21(1):164-171. PubMed ID: 34049825 [Abstract] [Full Text] [Related]
5. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA. Nat Methods; 2015 Dec; 12(12):1143-9. PubMed ID: 26501517 [Abstract] [Full Text] [Related]
6. Viral vector-based improvement of optic nerve regeneration: characterization of individual axons' growth patterns and synaptogenesis in a visual target. Yungher BJ, Luo X, Salgueiro Y, Blackmore MG, Park KK. Gene Ther; 2015 Oct; 22(10):811-21. PubMed ID: 26005861 [Abstract] [Full Text] [Related]
7. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects. Rahman MM, Tollefsbol TO. Methods; 2021 Mar; 187():77-91. PubMed ID: 32315755 [Abstract] [Full Text] [Related]
8. Using an Inducible CRISPR-dCas9-KRAB Effector System to Dissect Transcriptional Regulation in Human Embryonic Stem Cells. Parsi KM, Hennessy E, Kearns N, Maehr R. Methods Mol Biol; 2017 Mar; 1507():221-233. PubMed ID: 27832543 [Abstract] [Full Text] [Related]
9. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing. Goubert D, Koncz M, Kiss A, Rots MG. Methods Mol Biol; 2018 Mar; 1767():395-415. PubMed ID: 29524148 [Abstract] [Full Text] [Related]
10. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system. Josipović G, Tadić V, Klasić M, Zanki V, Bečeheli I, Chung F, Ghantous A, Keser T, Madunić J, Bošković M, Lauc G, Herceg Z, Vojta A, Zoldoš V. Nucleic Acids Res; 2019 Oct 10; 47(18):9637-9657. PubMed ID: 31410472 [Abstract] [Full Text] [Related]
11. Optic nerve regeneration screen identifies multiple genes restricting adult neural repair. Lindborg JA, Tran NM, Chenette DM, DeLuca K, Foli Y, Kannan R, Sekine Y, Wang X, Wollan M, Kim IJ, Sanes JR, Strittmatter SM. Cell Rep; 2021 Mar 02; 34(9):108777. PubMed ID: 33657370 [Abstract] [Full Text] [Related]
12. Upregulating Lin28a Promotes Axon Regeneration in Adult Mice with Optic Nerve and Spinal Cord Injury. Nathan FM, Ohtake Y, Wang S, Jiang X, Sami A, Guo H, Zhou FQ, Li S. Mol Ther; 2020 Aug 05; 28(8):1902-1917. PubMed ID: 32353321 [Abstract] [Full Text] [Related]
13. An efficient KRAB domain for CRISPRi applications in human cells. Alerasool N, Segal D, Lee H, Taipale M. Nat Methods; 2020 Nov 05; 17(11):1093-1096. PubMed ID: 33020655 [Abstract] [Full Text] [Related]
14. Harnessing rAAV-retro for gene manipulations in multiple pathways that are interrupted after spinal cord injury. Metcalfe M, Yee KM, Luo J, Martin-Thompson JH, Gandhi SP, Steward O. Exp Neurol; 2022 Apr 05; 350():113965. PubMed ID: 34973965 [Abstract] [Full Text] [Related]
15. Targeting chondroitinase ABC to axons enhances the ability of chondroitinase to promote neurite outgrowth and sprouting. Day P, Alves N, Daniell E, Dasgupta D, Ogborne R, Steeper A, Raza M, Ellis C, Fawcett J, Keynes R, Muir E. PLoS One; 2020 Apr 05; 15(1):e0221851. PubMed ID: 31961897 [Abstract] [Full Text] [Related]
16. Tyrosine-mutated AAV2-mediated shRNA silencing of PTEN promotes axon regeneration of adult optic nerve. Huang Z, Hu Z, Xie P, Liu Q. PLoS One; 2017 Apr 05; 12(3):e0174096. PubMed ID: 28323869 [Abstract] [Full Text] [Related]
17. The therapeutic implications of all-in-one AAV-delivered epigenome-editing platform in neurodegenerative disorders. Kantor B, O'Donovan B, Rittiner J, Hodgson D, Lindner N, Guerrero S, Dong W, Zhang A, Chiba-Falek O. Nat Commun; 2024 Aug 23; 15(1):7259. PubMed ID: 39179542 [Abstract] [Full Text] [Related]