These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


551 related items for PubMed ID: 32656685

  • 1. Bone shadow segmentation from ultrasound data for orthopedic surgery using GAN.
    Alsinan AZ, Patel VM, Hacihaliloglu I.
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1477-1485. PubMed ID: 32656685
    [Abstract] [Full Text] [Related]

  • 2. Automatic segmentation of bone surfaces from ultrasound using a filter-layer-guided CNN.
    Alsinan AZ, Patel VM, Hacihaliloglu I.
    Int J Comput Assist Radiol Surg; 2019 May; 14(5):775-783. PubMed ID: 30868478
    [Abstract] [Full Text] [Related]

  • 3. Robust real-time bone surfaces segmentation from ultrasound using a local phase tensor-guided CNN.
    Wang P, Vives M, Patel VM, Hacihaliloglu I.
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1127-1135. PubMed ID: 32430694
    [Abstract] [Full Text] [Related]

  • 4. Enhancement of bone shadow region using local phase-based ultrasound transmission maps.
    Hacihaliloglu I.
    Int J Comput Assist Radiol Surg; 2017 Jun; 12(6):951-960. PubMed ID: 28285340
    [Abstract] [Full Text] [Related]

  • 5. An efficient end-to-end CNN for segmentation of bone surfaces from ultrasound.
    Luan K, Li Z, Li J.
    Comput Med Imaging Graph; 2020 Sep; 84():101766. PubMed ID: 32781381
    [Abstract] [Full Text] [Related]

  • 6. Fast and automatic bone segmentation and registration of 3D ultrasound to CT for the full pelvic anatomy: a comparative study.
    Pandey P, Guy P, Hodgson AJ, Abugharbieh R.
    Int J Comput Assist Radiol Surg; 2018 Oct; 13(10):1515-1524. PubMed ID: 29804181
    [Abstract] [Full Text] [Related]

  • 7. 3D Ultrasound for Orthopedic Interventions.
    Hacihaliloglu I.
    Adv Exp Med Biol; 2018 Oct; 1093():113-129. PubMed ID: 30306477
    [Abstract] [Full Text] [Related]

  • 8. Unsupervised shape-and-texture-based generative adversarial tuning of pre-trained networks for carotid segmentation from 3D ultrasound images.
    Chen Z, Jiang M, Chiu B.
    Med Phys; 2024 Oct; 51(10):7240-7256. PubMed ID: 39008794
    [Abstract] [Full Text] [Related]

  • 9. 3D surface voxel tracing corrector for accurate bone segmentation.
    Guo H, Song S, Wang J, Guo M, Cheng Y, Wang Y, Tamura S.
    Int J Comput Assist Radiol Surg; 2018 Oct; 13(10):1549-1563. PubMed ID: 29916062
    [Abstract] [Full Text] [Related]

  • 10. Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration.
    Grupp RB, Unberath M, Gao C, Hegeman RA, Murphy RJ, Alexander CP, Otake Y, McArthur BA, Armand M, Taylor RH.
    Int J Comput Assist Radiol Surg; 2020 May; 15(5):759-769. PubMed ID: 32333361
    [Abstract] [Full Text] [Related]

  • 11. A deep learning method for real-time intraoperative US image segmentation in prostate brachytherapy.
    Girum KB, Lalande A, Hussain R, Créhange G.
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1467-1476. PubMed ID: 32691302
    [Abstract] [Full Text] [Related]

  • 12. Non-iterative partial view 3D ultrasound to CT registration in ultrasound-guided computer-assisted orthopedic surgery.
    Hacihaliloglu I, Wilson DR, Gilbart M, Hunt MA, Abolmaesumi P.
    Int J Comput Assist Radiol Surg; 2013 Mar; 8(2):157-68. PubMed ID: 22622884
    [Abstract] [Full Text] [Related]

  • 13. Multi-body 3D-2D registration for image-guided reduction of pelvic dislocation in orthopaedic trauma surgery.
    Han R, Uneri A, Ketcha M, Vijayan R, Sheth N, Wu P, Vagdargi P, Vogt S, Kleinszig G, Osgood GM, Siewerdsen JH.
    Phys Med Biol; 2020 Jul 17; 65(13):135009. PubMed ID: 32217833
    [Abstract] [Full Text] [Related]

  • 14. Registration of 3D freehand ultrasound to a bone model for orthopedic procedures of the forearm.
    Ciganovic M, Ozdemir F, Pean F, Fuernstahl P, Tanner C, Goksel O.
    Int J Comput Assist Radiol Surg; 2018 Jun 17; 13(6):827-836. PubMed ID: 29623539
    [Abstract] [Full Text] [Related]

  • 15. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N, Gou S, Yang S, Cao M, Sheng K.
    Med Phys; 2019 Jun 17; 46(6):2669-2682. PubMed ID: 31002188
    [Abstract] [Full Text] [Related]

  • 16. SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing.
    Bargsten L, Schlaefer A.
    Int J Comput Assist Radiol Surg; 2020 Sep 17; 15(9):1427-1436. PubMed ID: 32556953
    [Abstract] [Full Text] [Related]

  • 17. Fully‑automated deep‑learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases.
    Karimi-Bidhendi S, Arafati A, Cheng AL, Wu Y, Kheradvar A, Jafarkhani H.
    J Cardiovasc Magn Reson; 2020 Nov 30; 22(1):80. PubMed ID: 33256762
    [Abstract] [Full Text] [Related]

  • 18. Fast interactive medical image segmentation with weakly supervised deep learning method.
    Girum KB, Créhange G, Hussain R, Lalande A.
    Int J Comput Assist Radiol Surg; 2020 Sep 30; 15(9):1437-1444. PubMed ID: 32653985
    [Abstract] [Full Text] [Related]

  • 19. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M, Mazomenos E, Menciassi A, Stoyanov D.
    Comput Methods Programs Biomed; 2020 Aug 30; 192():105420. PubMed ID: 32171151
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.