These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Delivery of Liver-Specific miRNA-122 Using a Targeted Macromolecular Prodrug toward Synergistic Therapy for Hepatocellular Carcinoma. Ning Q, Liu YF, Ye PJ, Gao P, Li ZP, Tang SY, He DX, Tang SS, Wei H, Yu CY. ACS Appl Mater Interfaces; 2019 Mar 20; 11(11):10578-10588. PubMed ID: 30802029 [Abstract] [Full Text] [Related]
3. In vitro and in vivo evaluation of macromolecular prodrug GC-FUA based nanoparticle for hepatocellular carcinoma chemotherapy. Huang C, Li NM, Gao P, Yang S, Ning Q, Huang W, Li ZP, Ye PJ, Xiang L, He DX, Tan XW, Yu CY. Drug Deliv; 2017 Nov 20; 24(1):459-466. PubMed ID: 28219253 [Abstract] [Full Text] [Related]
4. Design of an Anticancer Copper(II) Prodrug Based on the Lys199 Residue of the Active Targeting Human Serum Albumin Nanoparticle Carrier. Gou Y, Zhang Y, Zhang Z, Wang J, Zhou Z, Liang H, Yang F. Mol Pharm; 2017 Jun 05; 14(6):1861-1873. PubMed ID: 28471669 [Abstract] [Full Text] [Related]
5. Cytocompatible chitosan-graft-mPEG-based 5-fluorouracil-loaded polymeric nanoparticles for tumor-targeted drug delivery. Antoniraj MG, Ayyavu M, Henry LJK, Nageshwar Rao G, Natesan S, Sundar DS, Kandasamy R. Drug Dev Ind Pharm; 2018 Mar 05; 44(3):365-376. PubMed ID: 28835136 [Abstract] [Full Text] [Related]
6. Targeted Nanoparticles for Co-delivery of 5-FU and Nitroxoline, a Cathepsin B Inhibitor, in HepG2 Cells of Hepatocellular Carcinoma. Varshosaz J, Fard MM, Mirian M, Hassanzadeh F. Anticancer Agents Med Chem; 2020 Mar 05; 20(3):346-358. PubMed ID: 31566137 [Abstract] [Full Text] [Related]
7. A conveniently synthesized Pt (IV) conjugated alginate nanoparticle with ligand self-shielded property for targeting treatment of hepatic carcinoma. Wang X, Chang Z, Nie X, Li Y, Hu Z, Ma J, Wang W, Song T, Zhou P, Wang H, Yuan Z. Nanomedicine; 2019 Jan 05; 15(1):153-163. PubMed ID: 30308299 [Abstract] [Full Text] [Related]
9. Nanoparticles inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery via cell surface-related GRP78. Zhao L, Li H, Shi Y, Wang G, Liu L, Su C, Su R. Int J Nanomedicine; 2015 Jan 05; 10():245-56. PubMed ID: 25565817 [Abstract] [Full Text] [Related]
14. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. Zhao J, Yan C, Chen Z, Liu J, Song H, Wang W, Liu J, Yang N, Zhao Y, Chen L. J Colloid Interface Sci; 2019 Mar 22; 540():66-77. PubMed ID: 30634060 [Abstract] [Full Text] [Related]
15. Carboxymethyl-β-cyclodextrin conjugated nanoparticles facilitate therapy for folate receptor-positive tumor with the mediation of folic acid. Su C, Li H, Shi Y, Wang G, Liu L, Zhao L, Su R. Int J Pharm; 2014 Oct 20; 474(1-2):202-11. PubMed ID: 25149123 [Abstract] [Full Text] [Related]
18. Galactosylated chitosan triptolide nanoparticles for overcoming hepatocellular carcinoma: Enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms. Zhang YQ, Shen Y, Liao MM, Mao X, Mi GJ, You C, Guo QY, Li WJ, Wang XY, Lin N, Webster TJ. Nanomedicine; 2019 Jan 20; 15(1):86-97. PubMed ID: 30244085 [Abstract] [Full Text] [Related]
19. Biodistribution and biocompatibility of glycyrrhetinic acid and galactose-modified chitosan nanoparticles as a novel targeting vehicle for hepatocellular carcinoma. Li M, Wang Y, Jiang S, Gao Y, Zhang W, Hu S, Cheng X, Zhang C, Sun P, Ke W, Wang G, Song Z, Zhang Y, Zheng QC. Nanomedicine (Lond); 2020 Jan 20; 15(2):145-161. PubMed ID: 31782335 [Abstract] [Full Text] [Related]
20. Targeted delivery of microRNA-199a-3p using self-assembled dipeptide nanoparticles efficiently reduces hepatocellular carcinoma in mice. Varshney A, Panda JJ, Singh AK, Yadav N, Bihari C, Biswas S, Sarin SK, Chauhan VS. Hepatology; 2018 Apr 20; 67(4):1392-1407. PubMed ID: 29108133 [Abstract] [Full Text] [Related] Page: [Next] [New Search]