These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


425 related items for PubMed ID: 32663226

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Prioritization of candidate genes in "QTL-hotspot" region for drought tolerance in chickpea (Cicer arietinum L.).
    Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa H, Thudi M, Roorkiwal M, Katta MA, Doddamani D, Garg V, Kishor PBK, Gaur PM, Nguyen HT, Batley J, Edwards D, Sutton T, Varshney RK.
    Sci Rep; 2015 Oct 19; 5():15296. PubMed ID: 26478518
    [Abstract] [Full Text] [Related]

  • 27. The SPL transcription factor genes are potential targets for epigenetic regulation in response to drought stress in chickpea (C. arietinum L.).
    Yadav S, Yadava YK, Meena S, Singh L, Kansal R, Grover M, M S N, Bharadwaj C, Paul V, Gaikwad K, Jain PK.
    Mol Biol Rep; 2023 Jun 19; 50(6):5509-5517. PubMed ID: 37119417
    [Abstract] [Full Text] [Related]

  • 28. Selection and screening of drought tolerant high yielding chickpea genotypes based on physio-biochemical indices and multi-environmental yield trials.
    Shah TM, Imran M, Atta BM, Ashraf MY, Hameed A, Waqar I, Shafiq M, Hussain K, Naveed M, Aslam M, Maqbool MA.
    BMC Plant Biol; 2020 Apr 17; 20(1):171. PubMed ID: 32303179
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Characterization of a chickpea (Cicer arietinum L.) NAC family gene, CarNAC5, which is both developmentally- and stress-regulated.
    Peng H, Cheng HY, Yu XW, Shi QH, Zhang H, Li JG, Ma H.
    Plant Physiol Biochem; 2009 Apr 17; 47(11-12):1037-45. PubMed ID: 19800808
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Repeat length variation in the 5'UTR of myo-inositol monophosphatase gene is related to phytic acid content and contributes to drought tolerance in chickpea (Cicer arietinum L.).
    Joshi-Saha A, Reddy KS.
    J Exp Bot; 2015 Sep 17; 66(19):5683-90. PubMed ID: 25888598
    [Abstract] [Full Text] [Related]

  • 35. Transcriptional responses to drought stress in root and leaf of chickpea seedling.
    Wang X, Liu Y, Jia Y, Gu H, Ma H, Yu T, Zhang H, Chen Q, Ma L, Gu A, Zhang J, Shi S, Ma H.
    Mol Biol Rep; 2012 Aug 17; 39(8):8147-58. PubMed ID: 22562393
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. A superior gene allele involved in abscisic acid signaling enhances drought tolerance and yield in chickpea.
    Thakro V, Malik N, Basu U, Srivastava R, Narnoliya L, Daware A, Varshney N, Mohanty JK, Bajaj D, Dwivedi V, Tripathi S, Jha UC, Dixit GP, Singh AK, Tyagi AK, Upadhyaya HD, Parida SK.
    Plant Physiol; 2023 Mar 17; 191(3):1884-1912. PubMed ID: 36477336
    [Abstract] [Full Text] [Related]

  • 38. The RNA-Seq-based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development.
    Kudapa H, Garg V, Chitikineni A, Varshney RK.
    Plant Cell Environ; 2018 Sep 17; 41(9):2209-2225. PubMed ID: 29637575
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.