These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
179 related items for PubMed ID: 3266959
41. Partial involvement of monoamines and opiates in the inhibition of rat spinal nociceptive neurons evoked by stimulation in midbrain periaqueductal gray or lateral reticular formation. Carstens E, Culhane ES, Banisadr R. Brain Res; 1990 Jul 02; 522(1):7-13. PubMed ID: 2224516 [Abstract] [Full Text] [Related]
42. Cerebellar stimulation modulates thalamic noxious-evoked responses. Liu FY, Qiao JT, Dafny N. Brain Res Bull; 1993 Jul 02; 30(5-6):529-34. PubMed ID: 8457903 [Abstract] [Full Text] [Related]
43. Effects of conditioning periaqueductal gray stimulation on responses of thalamic nociceptive neurons to tooth pulp stimulation. Ishii T, Nishikawa Y. J Osaka Dent Univ; 1999 Apr 02; 33(1):9-21. PubMed ID: 10863471 [Abstract] [Full Text] [Related]
44. Suppression of bulboreticular unit responses to noxious stimuli by analgesic mesencephalic stimulation. Morrow TJ, Casey KL. Somatosens Res; 1983 Apr 02; 1(2):151-68. PubMed ID: 6679918 [Abstract] [Full Text] [Related]
45. [The effects of electrical stimulation of nucleus raphe magnus and nucleus reticularis gigantocellularis on medial thalamic neurons--special reference to noxious neurons]. Miyamoto T. No To Shinkei; 1988 Oct 02; 40(10):971-8. PubMed ID: 3196501 [Abstract] [Full Text] [Related]
46. Functional changes in the descending antinociceptive system of morphine-dependent rats. Emmers R. Exp Neurol; 1984 May 02; 84(2):450-62. PubMed ID: 6609087 [Abstract] [Full Text] [Related]
47. Periaqueductal gray and cerebral cortex modulate responses of medial thalamic neurons to noxious stimulation. Andersen E. Brain Res; 1986 Jun 04; 375(1):30-6. PubMed ID: 3719357 [Abstract] [Full Text] [Related]
48. Selective effects of pirenperone on analgesia produced by morphine or electrical stimulation at sites in the nucleus raphe magnus and periaqueductal gray. Paul D, Phillips AG. Psychopharmacology (Berl); 1986 Jun 04; 88(2):172-6. PubMed ID: 3081929 [Abstract] [Full Text] [Related]
49. Serotonergic mediation of descending inhibition from midbrain periaqueductal gray, but not reticular formation, or spinal nociceptive transmission in the cat. Carstens E, Fraunhoffer M, Zimmermann M. Pain; 1981 Apr 04; 10(2):149-167. PubMed ID: 6267541 [Abstract] [Full Text] [Related]
50. Pontomedullary raphe neurons: intracellular responses to central and peripheral electrical stimulation. Maciewicz R, Sandrew BB, Phipps BS, Poletti CE, Foote WE. Brain Res; 1984 Feb 13; 293(1):17-33. PubMed ID: 6704715 [Abstract] [Full Text] [Related]
51. Antinociception induced by intravenous dipyrone (metamizol) upon dorsal horn neurons: involvement of endogenous opioids at the periaqueductal gray matter, the nucleus raphe magnus, and the spinal cord in rats. Vazquez E, Hernandez N, Escobar W, Vanegas H. Brain Res; 2005 Jun 28; 1048(1-2):211-7. PubMed ID: 15921664 [Abstract] [Full Text] [Related]
52. Dorsal raphe stimulation reduces responses of parafascicular neurons to noxious stimulation. Andersen E, Dafny N. Pain; 1983 Apr 28; 15(4):323-31. PubMed ID: 6306539 [Abstract] [Full Text] [Related]
53. Neuronal responses of periaqueductal gray to peripheral noxious stimulation. Sharma R, Sinha R, Mathur R, Nayar U. Indian J Physiol Pharmacol; 1999 Oct 28; 43(4):449-57. PubMed ID: 10776460 [Abstract] [Full Text] [Related]
54. Comparison of the effects of ventral medullary lesions on systemic and microinjection morphine analgesia. Young EG, Watkins LR, Mayer DJ. Brain Res; 1984 Jan 02; 290(1):119-29. PubMed ID: 6692127 [Abstract] [Full Text] [Related]
55. Bulbar influences on the periaqueductal gray. Potential role in nociception. Sotgiu ML. Neuroreport; 1990 Sep 02; 1(1):5-8. PubMed ID: 2129856 [Abstract] [Full Text] [Related]
56. Phenytoin administration reveals a differential role of pontine reticular formation and periaqueductal gray neurons in generation of the convulsive behaviors of audiogenic seizures. N'Gouemo P, Faingold CL. Brain Res; 2000 Mar 24; 859(2):311-7. PubMed ID: 10719079 [Abstract] [Full Text] [Related]
57. Projections from the periaqueductal gray to the rostromedial pericoerulear region and nucleus locus coeruleus: anatomic and physiologic studies. Ennis M, Behbehani M, Shipley MT, Van Bockstaele EJ, Aston-Jones G. J Comp Neurol; 1991 Apr 15; 306(3):480-94. PubMed ID: 1713927 [Abstract] [Full Text] [Related]
58. Projections from the periaqueductal gray matter to the B3 cellular area (nucleus raphe magnus and nucleus reticularis paragigantocellularis) as revealed by the retrograde transport of horseradish peroxidase in the rat. Fardin V, Oliveras JL, Besson JM. J Comp Neurol; 1984 Mar 10; 223(4):483-500. PubMed ID: 6325508 [Abstract] [Full Text] [Related]
59. Intracellular responses of raphe magnus neurons during the jaw-opening reflex evoked by tooth pulp stimulation. Mason P, Strassman A, Maciewicz R. Brain Res; 1986 Aug 06; 379(2):232-41. PubMed ID: 3742222 [Abstract] [Full Text] [Related]
60. Electrophysiological characterization of the projection from the nucleus raphe magnus to the lateral reticular nucleus: possible role of an excitatory amino acid in synaptic activation. Murphy AZ, Behbehani MM. Brain Res; 1993 Mar 19; 606(1):68-78. PubMed ID: 8462005 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]