These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


139 related items for PubMed ID: 32682846

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Netrin-1 Improves Functional Recovery through Autophagy Regulation by Activating the AMPK/mTOR Signaling Pathway in Rats with Spinal Cord Injury.
    Bai L, Mei X, Shen Z, Bi Y, Yuan Y, Guo Z, Wang H, Zhao H, Zhou Z, Wang C, Zhu K, Li G, Lv G.
    Sci Rep; 2017 Feb 10; 7():42288. PubMed ID: 28186165
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Wnt-3a improves functional recovery through autophagy activation via inhibiting the mTOR signaling pathway after spinal cord injury.
    Gao K, Niu J, Dang X.
    Neurosci Lett; 2020 Oct 15; 737():135305. PubMed ID: 32818590
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Neuroprotection of melatonin on spinal cord injury by activating autophagy and inhibiting apoptosis via SIRT1/AMPK signaling pathway.
    Gao K, Niu J, Dang X.
    Biotechnol Lett; 2020 Oct 15; 42(10):2059-2069. PubMed ID: 32514788
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Metformin Improves Functional Recovery After Spinal Cord Injury via Autophagy Flux Stimulation.
    Zhang D, Xuan J, Zheng BB, Zhou YL, Lin Y, Wu YS, Zhou YF, Huang YX, Wang Q, Shen LY, Mao C, Wu Y, Wang XY, Tian NF, Xu HZ, Zhang XL.
    Mol Neurobiol; 2017 Jul 15; 54(5):3327-3341. PubMed ID: 27167128
    [Abstract] [Full Text] [Related]

  • 11. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation.
    Wang C, Wang Q, Lou Y, Xu J, Feng Z, Chen Y, Tang Q, Zheng G, Zhang Z, Wu Y, Tian N, Zhou Y, Xu H, Zhang X.
    J Cell Mol Med; 2018 Feb 15; 22(2):1148-1166. PubMed ID: 29148269
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Zinc Regulates Glucose Metabolism of the Spinal Cord and Neurons and Promotes Functional Recovery after Spinal Cord Injury through the AMPK Signaling Pathway.
    Hu H, Xia N, Lin J, Li D, Zhang C, Ge M, Tian H, Mei X.
    Oxid Med Cell Longev; 2021 Feb 15; 2021():4331625. PubMed ID: 34373765
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Effect of pollen typhae on inhibiting autophagy in spinal cord injury of rats and its mechanisms.
    Wang W, Guo Z, Xu Z, Meng Q, Chen C, Zhang Y, Cao X.
    Int J Clin Exp Pathol; 2015 Feb 15; 8(3):2375-83. PubMed ID: 26045744
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. KU0063794, a Dual mTORC1 and mTORC2 Inhibitor, Reduces Neural Tissue Damage and Locomotor Impairment After Spinal Cord Injury in Mice.
    Cordaro M, Paterniti I, Siracusa R, Impellizzeri D, Esposito E, Cuzzocrea S.
    Mol Neurobiol; 2017 May 15; 54(4):2415-2427. PubMed ID: 26960330
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.