These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 3272185
21. Recovery from monocular deprivation in the monkey. I. Reversal of physiological effects in the visual cortex. Blakemore C, Vital-Durand F, Garey LJ. Proc R Soc Lond B Biol Sci; 1981 Nov 24; 213(1193):399-423. PubMed ID: 6119688 [Abstract] [Full Text] [Related]
22. Regulation of basal release of GABA by noradrenaline in the kitten visual cortex. Shirokawa T, Ogawa T. Neuroreport; 1994 Oct 27; 5(16):2037-40. PubMed ID: 7865739 [Abstract] [Full Text] [Related]
23. Neuronal activity and neurotrophic factors regulate GAD-65/67 mRNA and protein expression in organotypic cultures of rat visual cortex. Patz S, Wirth MJ, Gorba T, Klostermann O, Wahle P. Eur J Neurosci; 2003 Jul 27; 18(1):1-12. PubMed ID: 12859332 [Abstract] [Full Text] [Related]
24. Amblyopia induced by anisometropia without shrinkage of ocular dominance columns in human striate cortex. Horton JC, Stryker MP. Proc Natl Acad Sci U S A; 1993 Jun 15; 90(12):5494-8. PubMed ID: 8390668 [Abstract] [Full Text] [Related]
25. Cell- and lamina-specific expression and activity-dependent regulation of type II calcium/calmodulin-dependent protein kinase isoforms in monkey visual cortex. Tighilet B, Hashikawa T, Jones EG. J Neurosci; 1998 Mar 15; 18(6):2129-46. PubMed ID: 9482799 [Abstract] [Full Text] [Related]
26. Recovery from monocular deprivation in the monkey. III. Reversal of anatomical effects in the visual cortex. Swindale NV, Vital-Durand F, Blakemore C. Proc R Soc Lond B Biol Sci; 1981 Nov 24; 213(1193):435-50. PubMed ID: 6119690 [Abstract] [Full Text] [Related]
27. Human nuclear respiratory factor 2 alpha subunit cDNA: isolation, subcloning, sequencing, and in situ hybridization of transcripts in normal and monocularly deprived macaque visual system. Guo A, Nie F, Wong-Riley M. J Comp Neurol; 2000 Feb 07; 417(2):221-32. PubMed ID: 10660899 [Abstract] [Full Text] [Related]
28. Synaptic relationships of a type of GABA-immunoreactive neuron (clutch cell), spiny stellate cells and lateral geniculate nucleus afferents in layer IVC of the monkey striate cortex. Kisvarday ZF, Cowey A, Somogyi P. Neuroscience; 1986 Nov 07; 19(3):741-61. PubMed ID: 3540723 [Abstract] [Full Text] [Related]
29. Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat's visual cortex. Freund TF, Martin KA, Smith AD, Somogyi P. J Comp Neurol; 1983 Dec 10; 221(3):263-78. PubMed ID: 6655085 [Abstract] [Full Text] [Related]
30. Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus. Freichel C, Potschka H, Ebert U, Brandt C, Löscher W. Neuroscience; 2006 Sep 15; 141(4):2177-94. PubMed ID: 16797850 [Abstract] [Full Text] [Related]
31. Monocular and binocular deprivation in the monkey: morphological effects and reversibility. Vital-Durand F, Garey LJ, Blakemore C. Brain Res; 1978 Dec 08; 158(1):45-64. PubMed ID: 21348351 [Abstract] [Full Text] [Related]
32. Activity-dependent regulation of glutamic acid decarboxylase in the rat barrel cortex: effects of neonatal versus adult sensory deprivation. Akhtar ND, Land PW. J Comp Neurol; 1991 May 08; 307(2):200-13. PubMed ID: 1713230 [Abstract] [Full Text] [Related]
33. [Effect of light deprivation on GABA metabolism in subcellular fractions of the rabbit visual system]. Kunert E, Dovedova EL. Vopr Med Khim; 1979 May 08; 25(4):460-6. PubMed ID: 473689 [Abstract] [Full Text] [Related]
34. The effects of monocular deprivation on the size of GAD+ neurons in the cat's dorsal lateral geniculate nucleus. Robson JA, Martin-Elkins CL. J Comp Neurol; 1985 Sep 01; 239(1):62-74. PubMed ID: 2995461 [Abstract] [Full Text] [Related]
35. GABA and GABA receptors alterations in the primary visual cortex of concave lens-induced myopic model. Zhao W, Bi AL, Xu CL, Ye X, Chen MQ, Wang XT, Zhang XY, Guo JG, Jiang WJ, Zhang J, Bi HS. Brain Res Bull; 2017 Apr 01; 130():173-179. PubMed ID: 28163071 [Abstract] [Full Text] [Related]