These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
549 related items for PubMed ID: 32729277
1. Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise. Kim JH, Yoon HJ, Lee E, Kim I, Cha YK, Bak SH. Korean J Radiol; 2021 Jan; 22(1):131-138. PubMed ID: 32729277 [Abstract] [Full Text] [Related]
2. Impact of deep learning-based image reconstruction on image quality compared with adaptive statistical iterative reconstruction-Veo in renal and adrenal computed tomography. Bie Y, Yang S, Li X, Zhao K, Zhang C, Zhong H. J Xray Sci Technol; 2022 Jan; 30(3):409-418. PubMed ID: 35124575 [Abstract] [Full Text] [Related]
4. Deep learning reconstruction for contrast-enhanced CT of the upper abdomen: similar image quality with lower radiation dose in direct comparison with iterative reconstruction. Nam JG, Hong JH, Kim DS, Oh J, Goo JM. Eur Radiol; 2021 Aug; 31(8):5533-5543. PubMed ID: 33555354 [Abstract] [Full Text] [Related]
9. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Jiang B, Li N, Shi X, Zhang S, Li J, de Bock GH, Vliegenthart R, Xie X. Radiology; 2022 Apr; 303(1):202-212. PubMed ID: 35040674 [Abstract] [Full Text] [Related]
10. Deep learning-based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V). Kim I, Kang H, Yoon HJ, Chung BM, Shin NY. Neuroradiology; 2021 Jun; 63(6):905-912. PubMed ID: 33037503 [Abstract] [Full Text] [Related]
11. Can 1.25 mm thin-section images generated with Deep Learning Image Reconstruction technique replace standard-of-care 5 mm images in abdominal CT? Cao J, Mroueh N, Pisuchpen N, Parakh A, Lennartz S, Pierce TT, Kambadakone AR. Abdom Radiol (NY); 2023 Oct; 48(10):3253-3264. PubMed ID: 37369922 [Abstract] [Full Text] [Related]
12. Assessment of Image Quality of Coronary Computed Tomography Angiography in Obese Patients by Comparing Deep Learning Image Reconstruction With Adaptive Statistical Iterative Reconstruction Veo. Wang H, Wang R, Li Y, Zhou Z, Gao Y, Bo K, Yu M, Sun Z, Xu L. J Comput Assist Tomogr; 2023 Oct; 46(1):34-40. PubMed ID: 35099134 [Abstract] [Full Text] [Related]
14. Image Quality Improvement of Low-dose Abdominal CT using Deep Learning Image Reconstruction Compared with the Second Generation Iterative Reconstruction. Kang HJ, Lee JM, Park SJ, Lee SM, Joo I, Yoon JH. Curr Med Imaging; 2024 Oct; 20():e250523217310. PubMed ID: 37231764 [Abstract] [Full Text] [Related]
15. Assessment of low-dose paranasal sinus CT imaging using a new deep learning image reconstruction technique in children compared to adaptive statistical iterative reconstruction V (ASiR-V). Li Y, Liu X, Zhuang XH, Wang MJ, Song XF. BMC Med Imaging; 2022 Jun 03; 22(1):106. PubMed ID: 35658908 [Abstract] [Full Text] [Related]
17. Iterative reconstruction vs deep learning image reconstruction: comparison of image quality and diagnostic accuracy of arterial stenosis in low-dose lower extremity CT angiography. Qu T, Guo Y, Li J, Cao L, Li Y, Chen L, Sun J, Lu X, Guo J. Br J Radiol; 2022 Dec 01; 95(1140):20220196. PubMed ID: 36341682 [Abstract] [Full Text] [Related]
18. Low-dose liver CT: image quality and diagnostic accuracy of deep learning image reconstruction algorithm. Caruso D, De Santis D, Del Gaudio A, Guido G, Zerunian M, Polici M, Valanzuolo D, Pugliese D, Persechino R, Cremona A, Barbato L, Caloisi A, Iannicelli E, Laghi A. Eur Radiol; 2024 Apr 01; 34(4):2384-2393. PubMed ID: 37688618 [Abstract] [Full Text] [Related]
19. Deep learning image reconstruction for improvement of image quality of abdominal computed tomography: comparison with hybrid iterative reconstruction. Ichikawa Y, Kanii Y, Yamazaki A, Nagasawa N, Nagata M, Ishida M, Kitagawa K, Sakuma H. Jpn J Radiol; 2021 Jun 01; 39(6):598-604. PubMed ID: 33449305 [Abstract] [Full Text] [Related]